Researcher:
Angjo, Joana

Loading...
Profile Picture
ORCID

Job Title

Master Student

First Name

Joana

Last Name

Angjo

Name

Name Variants

Angjo, Joana

Email Address

Birth Date

Search Results

Now showing 1 - 2 of 2
  • Placeholder
    Publication
    Asymmetrical relaying in molecular communications
    (IEEE-Inst Electrical Electronics Engineers Inc, 2022) Pusane, Ali E.; Yılmaz, H. Birkan; Tuğcu, Tuna; N/A; Department of Electrical and Electronics Engineering; Angjo, Joana; Başar, Ertuğrul; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 149116
    Molecular communication via diffusion (MCvD) is a novel communication technique that uses the diffusive characteristics of molecules for enabling the communication between nanomachines. Since the molecules propagate following a random motion, MCvD schemes are usually limited to a short communication range. Most of the molecular relaying schemes in the literature consider symmetric setups where transmitters and receivers are placed at the same distance from the relay, which is difficult to provide in practical scenarios and a possible cause of failure. In this study, asymmetric molecular links of a relay system are investigated. In order to achieve a satisfactory overall performance in spite of the asymmetries, two parameter optimization methods are proposed for the uplink of a relaying system, based on emitting different types of molecules with different diffusion coefficient values from the transmitters. Due to the channel symmetry, the solutions presented in this study are expected to hold for the downlink as well. The resulting bit error rate (BER) performances are presented and discussed.
  • Placeholder
    Publication
    Optimal relaying in molecular communications
    (Elsevier, 2022) Pusane, Ali E.; Yilmaz, H. Birkan; Tugcu, Tuna; N/A; Department of Electrical and Electronics Engineering; Angjo, Joana; Başar, Ertuğrul; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 149116
    Molecular communication via diffusion (MCvD) schemes are limited to short distances between the nanomachines due to the transmitted signal becoming rapidly weaker as the distance increases. Additionally, these schemes are very often affected by high inter-symbol interference, which makes them prone to errors, thus leading to unreliability. In this paper, a novel system is proposed, which aims to enhance the received signal shape and the overall performance of MCvD schemes over longer distances. A relay nanomachine is introduced between the transmitter-receiver pair, which collects the first portion of the molecules emitted from the transmitter and keeps them for some delay time Tau, then releases them towards the receiver, such that the delayed and non-delayed portions of the molecules arrive almost at the same time. In this way, the signal's strength is enhanced by pointing more molecules towards the intended direction, that is, the receiver node. An analytical model for the optimal relaying scheme is proposed, alongside with an optimization problem to find the most advantageous Tau value. Comparison between the proposed scheme and the conventional single-input single-output scenario is provided by means of analytical and computer simulation results, showing a promising improvement in error rates when the relay is introduced. (c) 2022 Elsevier B.V. All rights reserved.