Researcher: Çelikbaş, Eda
Name Variants
Çelikbaş, Eda
Çelikbaş, Eda Aydındoğan
Çelikbaş, Eda Aydındoğan
Email Address
Birth Date
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Development of a cysteine responsive chlorinated hemicyanine for image-guided dual phototherapy(Elsevier, 2022) Erkısa, Merve; Ulukaya, Engin; N/A; N/A; Department of Chemistry; N/A; N/A; N/A; Department of Physics; Department of Chemistry; Department of Chemistry; Savani, Samira; Onbaşlı, Kübra; Gündüz, Hande; Çelikbaş, Eda; Muti, Abdullah; Khan, Minahil; Sennaroğlu, Alphan; Acar, Havva Funda Yağcı; Kölemen, Safacan; Master Student; PhD Student; Researcher; PhD Student; PhD Student; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Physics; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University AKKİM Boron-Based Materials & High-technology Chemicals Research & Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; College of Sciences; N/A; 365341; 224496; N/A; N/A; N/A 23851; 178902; 272051A cysteine (Cys) activatable chlorinated hemicyanine (Cl-Cys) was introduced as a tumour selective image guided dual phototherapy agent. Cl-Cys exhibited a significant turn on response in its near-IR emission signal and activated its singlet oxygen generation as well as photothermal conversion potentials upon reacting with Cys. The laser irradiation of Cl-Cys induced significant cell death in cancer cells with high Cys level, while it stayed deactivated and non-emissive in a healthy cell line. A profound synergistic PDT/PTT effect was observed at high doses. Remarkably, Cl-Cys marks the first ever example of Cys-responsive small organic-based therapeutic agent and holds a great promise to develop new activity-based photosensitizers for dual phototherapy action.Publication Open Access Analytical techniques for multiplex analysis of protein biomarkers(Taylor _ Francis, 2020) Van Gool, A.; Corrales, F.; Čolović, M.; Krstić, D.; Oliver-Martos, B.; Martínez-Cáceres, E.; Jakasa, I.; Gajski, G.; Brun, V.; Kyriacou, K.; Burzynska-Pedziwiatr, I.; Wozniak, L.A.; Nierkens, S.; Pascual García, C.; Katrlik, J.; Bojic-Trbojevic, Z.; Vacek, J.; Llorente, A.; Antohe, F.; Suica, V.; Suarez, G.; t’Kindt, R.; Martin, P.; Penque, D.; Martins, I.L.; Bodoki, E.; Jacob, B.-C.; Timur, S.; Allinson, J.; Sutton, C.; Luider, T.; Wittfooth, S.; Sammar, M.; Çelikbaş, Eda; Graduate School of Sciences and EngineeringIntroduction: The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. Areas covered: We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. Expert commentary: The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.Publication Open Access Recent advances in cyanine-based phototherapy agents(Frontiers, 2021) N/A; Department of Chemistry; Bilici, Kübra; Çetin, Sultan; Çelikbaş, Eda; Acar, Havva Funda Yağcı; Kölemen, Safacan; PhD Student; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 178902; 272051Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), are very promising treatment modalities for cancer since they provide locality and turn-on mechanism for toxicity, both of which are critical in reducing off-site toxicity. Irradiation of photosensitive agents demonstrated successful therapeutic outcomes; however, each approach has its limitations and needs to be improved for clinical success. The combination of PTT and PDT may work in a synergistic way to overcome the limitations of each method and indeed improve the treatment efficacy. The development of single photosensitive agents capable of inducing both PDT and PTT is, therefore, extremely advantageous and highly desired. Cyanine dyes are shown to have such potential, hence have been very popular in the recent years. Luminescence of cyanine dyes renders them as phototheranostic molecules, reporting the localization of the photosensitive agent prior to irradiation to induce phototoxicity, hence allowing image-guided phototherapy. In this review, we mainly focus on the cyanine dye-based phototherapy of different cancer cells, concentrating on the advancements achieved in the last ten years.