Researcher: Can, Özgür
Name Variants
Can, Özgür
Email Address
Birth Date
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only CRISPR-CAS13 system as a promising and versatile tool for cancer diagnosis, therapy, and research(American Chemical Society (ACS), 2021) Palaz, Fahreddin; Kalkan, Ali Kerem; Demir, Ayca Nur; Tozluyurt, Abdullah; Ozcan, Ahsen; Ozsoz, Mehmet; Department of Molecular Biology and Genetics; Can, Özgür; Undergraduate Student; Department of Molecular Biology and Genetics; College of Sciences; N/AOver the past decades, significant progress has been made in targeted cancer therapy. In precision oncology, molecular profiling of cancer patients enables the use of targeted cancer therapeutics. However, current diagnostic methods for molecular analysis of cancer are costly and require sophisticated equipment. Moreover, targeted cancer therapeutics such as monoclonal antibodies and small-molecule drugs may cause off-target effects and they are available for only a minority of cancer driver proteins. Therefore, there is still a need for versatile, efficient, and precise tools for cancer diagnostics and targeted cancer treatment. In recent years, the CRISPR-based genome and transcriptome engineering toolbox has expanded rapidly. Particularly, the RNA-targeting CRISPR-Cas13 system has unique biochemical properties, making Cas13 a promising tool for cancer diagnosis, therapy, and research. Cas13-based diagnostic methods allow early detection and monitoring of cancer markers from liquid biopsy samples without the need for complex instrumentation. In addition, Cas13 can be used for targeted cancer therapy through degrading and manipulating cancer-associated transcripts with high efficiency and specificity. Moreover, Cas13-mediated programmable RNA manipulation tools offer invaluable opportunities for cancer research, identification of drug-resistance mechanisms, and discovery of novel therapeutic targets. Here, we review and discuss the current use and potential applications of the CRISPR-Cas13 system in cancer diagnosis, therapy, and research. Thus, researchers will gain a deep understanding of CRISPR-Cas13 technologies, which have the potential to be used as next-generation cancer diagnostics and therapeutics.Publication Open Access Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing(Elsevier, 2021) Durdağı, Serdar; Doğan, Berna; Avşar, Timuçin; Erol, İsmail; Çalış, Şeyma; Orhan, Müge D.; Aksoydan, Busecan; Şahin, Kader; Oktay, Lalehan; Tolu, İlayda; Olkan, Alpsu; Erdemoğlu, Ece; Yefanov, Oleksandr M.; Dao, E. Han; Hayes, Brandon; Liang, Mengning; Seaberg, Matthew H.; Hunter, Mark S.; Batyuk, Alex; Mariani, Valerio; Su, Zhen; Poitevin, Frederic; Yoon, Chun Hong; Kupitz, Christopher; Sierra, Raymond G.; Snell, Edward H.; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; N/A; Demirci, Hasan; Dağ, Çağdaş; Büyükdağ, Cengizhan; Ertem, Fatma Betül; Yıldırım, Günseli; Destan, Ebru; Güven, Ömür; Ayan, Esra; Yüksel, Büşra; Göcenler, Oktay; Can, Özgür; Özabrahamyan, Serena; Tanısalı, Gökhan; Faculty Member; Faculty Member; Undergraduate Student; PhD Student; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Koç Üniversitesi İş Bankası Enfeksiyon Hastalıkları Uygulama ve Araştırma Merkezi (EHAM) / Koç University İşbank Center for Infectious Diseases (KU-IS CID); College of Sciences; Graduate School of Sciences and Engineering; School of Nursing; 307350; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/AThe COVID-19 pandemic has resulted in 198 million reported infections and more than 4 million deaths as of July 2021 (covid19.who.int). Research to identify effective therapies for COVID-19 includes: (1) designing a vaccine as future protection; (2) de novo drug discovery; and (3) identifying existing drugs to repurpose them as effective and immediate treatments. To assist in drug repurposing and design, we determine two apo structures of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease at ambient temperature by serial femtosecond X-ray crystallography. We employ detailed molecular simulations of selected known main protease inhibitors with the structures and compare binding modes and energies. The combined structural and molecular modeling studies not only reveal the dynamics of small molecules targeting the main protease but also provide invaluable opportunities for drug repurposing and structure-based drug design strategies against SARS-CoV-2.