Researcher: Khaleel, Aymen
Name Variants
Khaleel, Aymen
Email Address
Birth Date
5 results
Search Results
Now showing 1 - 5 of 5
Publication Metadata only Phase shift-free passive beamforming for reconfigurable intelligent surfaces(IEEE-Inst Electrical Electronics Engineers Inc, 2022) N/A; N/A; Department of Electrical and Electronics Engineering; Khaleel, Aymen; Başar, Ertuğrul; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 149116Reconfigurable intelligent surface (RIS)-assisted communications recently appeared as a game-changing technology for next-generation wireless communications due to its unprecedented ability to reform the propagation environment. One of the main aspects of using RISs is the exploitation of the so-called passive beamforming (PB), which is carried out by adjusting the reflection coefficients (mainly the phase shifts) of the individual RIS elements. However, practically, this individual phase shift adjustment is associated with many issues in hardware implementation, limiting the RIS achievable gain. In this paper, we propose a low-cost, phase shift-free and novel PB scheme by only optimizing the on/off states of the RIS elements while fixing their phase shifts. The proposed PB scheme is shown to achieve the same scaling law (quadratic growth with the RIS size) for the signal-to-noise ratio as in the classical phase shift-based PB scheme, yet, with far less sensitivity to spatial correlation and phase errors. We provide a unified mathematical analysis that characterizes the performance of the proposed PB scheme and obtain the outage probability for the considered RIS-assisted system. Based on the provided computer simulations, the proposed PB scheme is shown to have a clear superiority over the classical one under different performance metrics.Publication Metadata only Error performance of subsampling digital power estimation for integrated receivers(World Scientific Publ Co Pte Ltd, 2022) Zencir, Ertan; Aksoy, Hasan; N/A; Khaleel, Aymen; PhD Student; N/A; N/A; N/A; N/AEstimation of signal power levels at the output of integrated receiver building blocks is a vital function as the block voltage or power gains are set based on sensed power levels to maintain constant levels at block outputs in the receiver chain. RF and IF level real-time gain settings are determined with Automatic Gain Control (AGC) loops. AGC loop circuit topologies are usually based on analog detection circuits. These analog power detection circuits are based on techniques such as envelope detection, and logarithmic amplification usually accompanied by severe accuracy issues such as Process, Voltage and Temperature (PVT) spreads preventing correct gain adjustments. Adopting a dominantly digital approach to detect the signal power would ensure a significant reduction in PVT spreads. This work presents a review of the subsampling digital power estimation to create low power digital power estimations alternative to analog methods. The simulations of the method are applied to an AM and a 64-QAM signal. Simulation results show that the power estimation error is within the acceptable level of +/- 1 dB.Publication Open Access STAR-RIS-NOMA networks: an error performance perspective(Institute of Electrical and Electronics Engineers (IEEE), 2022) Aldababsa, Mahmoud; Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Khaleel, Aymen; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 149116; N/AThis letter investigates the bit error rate (BER) performance of simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) in non-orthogonal multiple access (NOMA) networks. In the investigated network, a STAR-RIS serves multiple non-orthogonal users located on either side of the surface by utilizing the mode switching protocol. We derive the closed-form BER expressions in perfect and imperfect successive interference cancellation cases. Furthermore, asymptotic analyses are also conducted to provide further insights into the BER behavior in the high signal-to-noise ratio region. Finally, the accuracy of our theoretical analysis is validated through Monte Carlo simulations. The obtained results reveal that the BER performance of STAR-RIS-NOMA outperforms that of the classical NOMA system, and STAR-RIS might be a promising NOMA 2.0 solution.Publication Open Access Reconfigurable intelligent surface-empowered MIMO systems(Institute of Electrical and Electronics Engineers (IEEE), 2021) Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Khaleel, Aymen; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 149116; N/AReconfigurable intelligent surface (RIS)-assisted communications appear as a promising candidate for future wireless systems due to its attractive advantages in terms of implementation cost and end-to-end system performance. In this article, two new multiple-input multiple-output (MIMO) system designs using RISs are presented to enhance the performance and boost the spectral efficiency of state-of-the-art MIMO communication systems. Vertical Bell Labs layered space-time (VBLAST) and Alamouti's schemes have been considered in this article and RIS-based simple transceiver architectures are proposed. For the VBLAST-based new system, an RIS is used to enhance the performance of the nulling and canceling-based suboptimal detection procedure as well as to noticeably boost the spectral efficiency by conveying extra bits through the adjustment of the phases of the RIS elements. In addition, RIS elements have been utilized in order to redesign Alamouti's scheme with a single radio frequency signal generator at the transmitter side and to enhance its bit error rate (BER) performance. Monte Carlo simulations are provided to show the effectiveness of our system designs and it has been shown that they outperform the reference schemes in terms of BER performance and spectral efficiency.Publication Open Access A novel NOMA solution with RIS partitioning(Institute of Electrical and Electronics Engineers (IEEE), 2022) Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Khaleel, Aymen; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 149116; N/AReconfigurable intelligent surface (RIS) empowered communications with non-orthogonal multiple access (NOMA) has recently become an appealing research direction for nextgeneration wireless communications. In this paper, we propose a novel NOMA solution with RIS partitioning, where we aim to enhance the spectrum efficiency by improving the ergodic rate of all users, and to maximize the user fairness. In the proposed system, we distribute the physical resources among users such that the base station (BS) and RIS are dedicated to serve different clusters of users. Furthermore, we formulate an RIS partitioning optimization problem to slice the RIS elements between the users such that the user fairness is maximized. The formulated problem is shown to be a non-convex and non-linear integer programming (NLIP) problem with a combinatorial feasible set, which is challenging to solve. Therefore, we exploit the structure of the problem to bound its feasible set and obtain a sub-optimal solution by sequentially applying three efficient search algorithms. Furthermore, we derive exact and asymptotic expressions for the outage probability. Simulation results clearly indicate the superiority of the proposed system over the considered benchmark systems in terms of ergodic sum-rate, outage probability, and user fairness performance.