Researcher: Rasmi, Seyyed Amir Babak
Name Variants
Rasmi, Seyyed Amir Babak
Email Address
Birth Date
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems(Springer, 2021) Fattahi, Ali; N/A; Department of Industrial Engineering; Rasmi, Seyyed Amir Babak; Türkay, Metin; PhD Student; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 24956Multi-objective optimization problems (MOOP) reflect the complexity of many real-world decision problems where objectives are conflicting. The presence of more than one criterion makes finding the non-dominated (ND) points a crucial issue in the decision making process. Tri-objective mixed-integer linear programs (TOMILP) are an important subclass of MOOPs that are applicable to many problems in economics, business, science, and engineering including sustainable systems that must consider economic, environmental, and social concerns simultaneously. The literature on finding the ND points of TOMILPs is limited; there are only a few algorithms published in the literature that do not guarantee generating the entire ND points of TOMILPs. We present a new method, the Slicing with Adaptive Steps Search (SASS), to generate the ND points of TOMILPs. The result of SASS is primarily a superset of the set of ND points in the form of (partially) ND faces. We then perform a post-processing to eliminate the dominated parts of the partially ND faces. We provide a theoretical analysis of SASS and illustrate its effectiveness on a large set of instances.Publication Open Access A multi-criteria decision analysis to include environmental, social, and cultural issues in the sustainable aggregate production plans(Elsevier, 2019) Department of Industrial Engineering; Türkay, Metin; Rasmi, Seyyed Amir Babak; Kazan, Cem; Faculty Member; PhD Student; Department of Industrial Engineering; Graduate School of Sciences and Engineering; 24956; N/A; N/AAggregate production planning (APP) that is an important concept of supply chain management (SCM), is one of the tools to determine production rates, inventory levels, and workforce requirements for fulfilling customer demands in a multi-period setting. Traditional APP models employ a single objective function to optimize monetary issues only. In this paper, we present a multi-objective APP model to analyze economic, social, environmental, and cultural pillars inclusively; moreover, each pillar includes several sub-pillars in the model. The resulting model includes an accurate representation of the problem with binary and continuous variables under sustainability considerations. We illustrate the effectiveness of the model in an appliance manufacturer and solve the problem using an exact solution method for multi-objective mixed-integer linear programs (MOMILP). We find a large number of the non-dominated (ND) points in the objective function space and analyze their trade-offs systematically. We show how this framework supports multiple criteria decision making process in the APP problems in the presence of sustainability considerations. Our approach provides a comprehensive analysis of the ND points of sustainable APP (SAPP) problems, and hence, the trade-offs of objective functions are insightful to the decision makers.Publication Open Access GoNDEF: an exact method to generate all non-dominated points of multi-objective mixed-integer linear programs(Springer, 2019) Department of Industrial Engineering; N/A; Türkay, Metin; Rasmi, Seyyed Amir Babak; Faculty Member; PhD Student; Department of Industrial Engineering; College of Engineering; Graduate School of Sciences and Engineering; 24956; N/AMost real-world problems involve multiple conflicting criteria. These problems are called multi-criteria/multi-objective optimization problems (MOOP). The main task in solving MOOPs is to find the non-dominated (ND) points in the objective space or efficient solutions in the decision space. A ND point is a point in the objective space with objective function values that cannot be improved without worsening another objective function. In this paper, we present a new method that generates the set of ND points for a multi-objective mixed-integer linear program (MOMILP). The Generator of ND and Efficient Frontier (GoNDEF) for MOMILPs finds that the ND points represented as points, line segments, and facets consist of every type of ND point. First, the GoNDEF sets integer variables to the values that result in ND points. Fixing integer variables to specific values results in a multi-objective linear program (MOLP). This MOLP has its own set of ND points. A subset of this set establishes a subset of the ND points set of the MOMILP. In this paper, we present an extensive theoretical analysis of the GoNDEF and illustrate its effectiveness on a set of instance problems.