Researcher:
Mete, Büşra

Loading...
Profile Picture
ORCID

Job Title

Master Student

First Name

Büşra

Last Name

Mete

Name

Name Variants

Mete, Büşra

Email Address

Birth Date

Search Results

Now showing 1 - 2 of 2
  • Placeholder
    Publication
    Metal-substituted zirconium diboride (Zr= Ni, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting
    (Elsevier, 2021) N/A; N/A; N/A; N/A; Department of Chemistry; Mete, Büşra; Peighambardoust, Naeimeh Sadat; Aydın, Samet; Sadeghi, Ebrahim; Aydemir, Umut; Master Student; Researcher; Other; PhD Student; Faculty Member; Department of Chemistry; Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Graduate School of Sciences and Engineering; N/A; N/A; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 58403
    Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those, the development of boron-based advanced catalysts is subject to designing the active and durable compounds, working as bifunctional materials under alkaline medium. In this study, a series of ZrB2-based catalysts with a general formula of Zr(1-x)TMxB2 (x = 0.05, 0.1, and 0.2) (TM = Fe, Co, and Ni) were prepared through a straightforward route and employed as bifunctional electrocatalysts in hydrogen and oxygen evolution reactions (HER and OER). The electrochemical measurements confirmed that the incorporation of Ni into the crystal structure of ZrB2 in the Zr0.8Ni0.2B2 sample led to an onset potential of 1.58 V in OER at a current density of 10 mA cm(-2), indicating a remarkable performance with a very low overpotential of 350 mV. Besides, Zr0.8Ni0.2B2 displayed an infinitesimal value of 56.6 mV dec(-1) regarding the Tafel slope, which was lesser as compared to the commercial RuO2 (66.2 mV dec(-1)). For the case of HER, Zr0.8Co0.2B2 showed the best performance compared to other samples with an overpotential of 420 mV and a Tafel slope of 101.6 mV dec(-1), following the Volmer mechanism. Both catalysts were examined for their long-term stability, manifesting excellent catalytic durability even after 12 h. Surprisingly, Zr0.8Co0.2B2 exhibited a drop from 420 to 380 mV in the overpotential value after 1000 CV sweeps, providing a promising performance in terms of HER. As-prepared metal-substituted ZrB2 electrocatalysts have great potential to be implemented in various green energy system applications. (C) 2021 Elsevier Ltd. All rights reserved.
  • Placeholder
    Publication
    Evaluating electrocatalytic activity of metal-substituted hafnium diboride (Hf1-xtmxb2; TM = Ni and Co) toward water splitting
    (Elsevier Science Sa, 2022) N/A; N/A; N/A; N/A; N/A; Department of Chemistry; Peighambardoust, Naeimeh Sadat; Sadeghi, Ebrahim; Mete, Büşra; Yağcı, Mustafa Barış; Aydemir, Umut; Researcher; PhD Student; Master Student; Researcher; Faculty Member; Department of Chemistry; Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; College of Sciences; N/A; N/A; N/A; N/A; 58403
    Developing non-precious, competent, and environmentally benign electrocatalysts to efficiently drive water electrolysis is critical but at the same time demanding. Layered metal diborides (MDbs) holding attractive features mainly due to the presence of borophene subunits in its crystal structure have lately sparked a great deal of attention for electrocatalytic applications. Here, we highlight the synthesis and electrocatalytic properties of HfB2-based electrocatalysts as Hf1-xTMxB2 (TM = Ni and Co; x = 0.1, 0.2, and 0.3) for both hydrogen and oxygen evolution reactions (HER/OER) under 1 M KOH. Amidst as-prepared samples, Hf0.8Ni0.2B2 and Hf0.8Co0.2B2 appeared to be the best OER and HER catalysts, generating the current density of 10 mA cm(-2) at overpotentials of 320 and 430 mV, individually. Concerning the OER, Hf0.8Ni0.2B2 performed an oxygen-evolving process similar to benchmarking RuO2 (an overpotential of 290 mV at 10 mA cm(-2)) and even more facile kinetics compared to RuO2 with Tafel slopes of 39.5 mV dec(-1) vs. 66.2 mV dec(-1). In addition, regarding HER, Hf0.8Co0.2B2 displayed an enhanced performance relative to pristine HfB2 (an overpotential of 620 mV at 10 mA cm(-2)), still inferior to noble metal 10% Pt/C (an overpotential of 198 mV at 10 mA cm(-2)). Furthermore, the interpretation of Tafel slopes unveils that all samples follow the Volmer path as HER mechanism. Finally, both best-performing electrocatalysts tolerated the current density of 10 mA cm(-2) for 20 h, manifesting stable bifunctional catalysts.