Researcher: Esin, Beril
Name Variants
Esin, Beril
Email Address
Birth Date
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Overcoming chemoresistance in triple negative breast cancer by bromodomain inhibition(Elsevier Sci Ltd, 2022) Philpott, M.; Cribbs, A.; Oppermann, U.; Onder, T. T.; Department of Molecular Biology and Genetics; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; Bayram, Özlem Yedier; Cingöz, Ahmet; Aksu, Ali Cenk; Değirmenci, Nareg Pınarbaşı; Esin, Beril; Kayabölen, Alişan; Cevatemre, Buse; Ayhan, Ceyda Açılan; Önder, Tuğba Bağcı; Researcher; Researcher; PhD Student; PhD Student; Master Student; PhD Student; Researcher; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; College of Engineering; Graduate School of Health Sciences; Graduate School of Health Sciences; Graduate School of Health Sciences; Graduate School of Health Sciences; Graduate School of Health Sciences; N/A; School of Medicine; School of Medicine; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 219658; 184359Background: Triple negative breast cancer (TNBC) is an aggressive subtypeofbreastcancerwithpoorprognosis.TNBCcellsdonotexpress receptorsforestrogen,progesteroneorHer2,eliminatingthepossibilityof targetedtherapyapplications.Therefore,current treatmentoptionforTNBC is limitedwithsurgery followedbyconventional chemotherapy.However, acquiredresistancetochemotherapyisamajorchallengethatisassociated withrelapse,whichisdrivenbycoordinatedactionsofgeneticandepigenetic events. MaterialsandMethods:Weaimedtoelucidatetherolesoffullspectrum ofepigeneticmodifiersinmaintenanceandreversionofchemoresistancein TNBC.TogenerateinvitromodelsofchemoresistantTNBC,weexposed3 different TNBC cell lines to escalating doses of taxane (paclitaxel). Transcriptome analysis by RNA-sequencingwere performed to reveal changesthat regulatechemoresistance.Withourcustomepigenome-wide CRISPR-Cas9library(EpigeneticKnock-OutLibrary-EPIKOL)targetingall chromatinreaders,writers,erasersandassociatedproteins,wesystematicallyinterrogatedtherolesofepigeneticmodifiersinchemoresistantTNBC cells.Wealsoconductedmediumscalechemicalscreensutilizingepigenetic probelibrariesinchemoresistantcells. Results:RNAsequencingonpairedsensitiveandchemoresistancecell linesrevealedABCB1upregulationasamajordriverofresistance.Inhibition of themembersofMLLandSWI/SNFcomplexes, aswell as thegenes relatedwithhistoneubiquitinationandacetyl-mark readers re-sensitized chemoresistantcellstopaclitaxel.Amemberof thebromodomainprotein family,BRPF1,cameasacommonhit inourchemical screenaswellas geneticscreens.KnockoutofBRPF1or itschemical inhibitioncompletely abolishedpaclitaxel resistanceandmodulatedABCB1expression. Conclusions:ThroughEPIKOLscreensonchemoresistantTNBCcells coupledwithchemicalscreens,weidentifiednovelepigeneticmodifiersthat arecrucial formaintainingandovercomingdrug resistance.Collectively, thesefindingsprovideabasistodevelopcombinationtherapiestoefficiently killchemoresistantTNBC.Publication Open Access EPIKOL, a chromatin-focused CRISPR/Cas9-based screening platform, to identify cancer-specific epigenetic vulnerabilities(Nature Portfolio, 2022) Philpott, Martin; Cribbs, Adam P.; Kung, Sonia H.Y; Bayram, Özlem Yedier; Gökbayrak, Bengül; Kayabölen, Alişan; Aksu, Ali Cenk; Cavga, Ayşe Derya; Cingöz, Ahmet; Kala, Ezgi Yağmur; Karabıyık, Göktuğ; Esin, Beril; Morova, Tunç; Uyulur, Fırat; Önder, Tuğba Bağcı; Syed, Hamzah; Lack, Nathan Alan; Önder, Tamer Tevfik; PhD Student; Faculty Member; Faculty Member; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; Graduate School of Health Sciences; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 184359; 318138; 120842; 42946Dysregulation of the epigenome due to alterations in chromatin modifier proteins commonly contribute to malignant transformation. To interrogate the roles of epigenetic modifiers in cancer cells, we generated an epigenome-wide CRISPR-Cas9 knockout library (EPIKOL) that targets a wide-range of epigenetic modifiers and their cofactors. We conducted eight screens in two different cancer types and showed that EPIKOL performs with high efficiency in terms of sgRNA distribution and depletion of essential genes. We discovered novel epigenetic modifiers that regulate triple-negative breast cancer (TNBC) and prostate cancer cell fitness. We confirmed the growth-regulatory functions of individual candidates, including SS18L2 and members of the NSL complex (KANSL2, KANSL3, KAT8) in TNBC cells. Overall, we show that EPIKOL, a focused sgRNA library targeting similar to 800 genes, can reveal epigenetic modifiers that are essential for cancer cell fitness under in vitro and in vivo conditions and enable the identification of novel anti-cancer targets. Due to its comprehensive epigenome-wide targets and relatively high number of sgRNAs per gene, EPIKOL will facilitate studies examining functional roles of epigenetic modifiers in a wide range of contexts, such as screens in primary cells, patient-derived xenografts as well as in vivo models.