Publication:
Conformational energies and entropies of peptides, and the peptide-protein binding problem

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorÜnal, Evrim Besray
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuauthorErman, Burak
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.researchcenterThe Center for Computational Biology and Bioinformatics (CCBB)
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid8745
dc.contributor.yokid179997
dc.date.accessioned2024-11-09T22:58:03Z
dc.date.issued2009
dc.description.abstractA novel statistical thermodynamic approach is applied to free-peptide segments in order to classify them according to their conformational energies, entropies and heat capacities. Our approach employs the rotational isomeric state (RIS) model in which the states are described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the pairwise-dependent states are derived from the torsion angle probabilities of the consecutive dipeptides in a coil library. The partition function is determined for a given sequence via RIS multiplication of the pre-determined matrices. The conformational partition function, Helmholtz free energy, energy, entropy and heat capacity are obtained. The model is applied to randomly produced peptides and also to known peptide inhibitors to analyze their thermodynamic properties. Peptides with low energy, low entropy and low-heat capacity are determined to be essential for a peptide to be a good candidate inhibitor. Free energy changes in peptide binding are also discussed.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue3
dc.description.openaccessNO
dc.description.volume6
dc.identifier.doi10.1088/1478-3975/6/3/036014
dc.identifier.eissn1478-3975
dc.identifier.issn1478-3967
dc.identifier.scopus2-s2.0-68249158558
dc.identifier.urihttp://dx.doi.org/10.1088/1478-3975/6/3/036014
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7659
dc.identifier.wos269178800014
dc.keywordsIntrinsic phi,psi propensities
dc.keywordsAmino-acids
dc.keywordsMolecular-dynamics
dc.keywordsCoil regions
dc.keywordsBackbone
dc.keywordsDesign
dc.keywordsLigand
dc.keywordsspecificity
dc.keywordsComplex
dc.keywordsThermodynamics
dc.languageEnglish
dc.publisherIOP Publishing Ltd
dc.sourcePhysical Biology
dc.subjectBiochemistry
dc.subjectMolecular biology
dc.subjectBiophysics
dc.titleConformational energies and entropies of peptides, and the peptide-protein binding problem
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-2297-2113
local.contributor.authorid0000-0002-2496-6059
local.contributor.kuauthorÜnal, Evrim Besray
local.contributor.kuauthorGürsoy, Attila
local.contributor.kuauthorErman, Burak
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files