Publication:
On heat transfer at microscale with implications for microactuator design

dc.contributor.coauthorYalçınkaya, Arda D.
dc.contributor.coauthorZervas, Michalis
dc.contributor.coauthorLeblebici, Yusuf
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorÖzsun, Özgür
dc.contributor.kuauthorAlaca, Burhanettin Erdem
dc.contributor.kuauthorYılmaz, Mehmet
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.contributor.yokid115108
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:01:42Z
dc.date.issued2009
dc.description.abstractThe dominance of conduction and the negligible effect of gravity, and hence free convection, are verified in the case of microscale heat sources surrounded by air at atmospheric pressure. A list of temperature-dependent heat transfer coefficients is provided. In contrast to previous approaches based on free convection, supplied coefficients converge with increasing temperature. Instead of creating a new external function for the definition of boundary conditions via conductive heat transfer, convective thin film coefficients already embedded in commercial finite element software are utilized under a constant heat flux condition. This facilitates direct implementation of coefficients, i. e. the list supplied in this work can directly be plugged into commercial software. Finally, the following four-step methodology is proposed for modeling: (i) determination of the thermal time constant of a specific microactuator, (ii) determination of the boundary layer size corresponding to this time constant, (iii) extraction of the appropriate heat transfer coefficients from a list provided and (iv) application of these coefficients as boundary conditions in thermomechanical finite element simulations. An experimental procedure is established for the determination of the thermal time constant, the first step of the proposed methodology. Based on conduction, the proposed method provides a physically sound solution to heat transfer issues encountered in the modeling of thermal microactuators.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume19
dc.identifier.doi10.1088/0960-1317/19/4/045020
dc.identifier.eissn1361-6439
dc.identifier.issn0960-1317
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-67849097432
dc.identifier.urihttp://dx.doi.org/10.1088/0960-1317/19/4/045020
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16017
dc.identifier.wos264575800020
dc.keywordsThermal flexure actuator
dc.keywordsElectrothermal microactuators
dc.keywordsBehavior
dc.languageEnglish
dc.publisherIop Publishing Ltd
dc.sourceJournal of Micromechanics and Microengineering
dc.subjectEngineering
dc.subjectElectrical and electronics engineering
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectInstruments
dc.subjectInstrumentation
dc.subjectPhysics
dc.subjectApplied physics
dc.titleOn heat transfer at microscale with implications for microactuator design
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0001-5931-8134
local.contributor.authorid0000-0001-5496-6212
local.contributor.kuauthorÖzsun, Özgür
local.contributor.kuauthorAlaca, Burhanettin Erdem
local.contributor.kuauthorYılmaz, Mehmet
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files