Publication:
Open-Air pulsed laser-deposited NiCoCuFeMoMnO x high-entropy oxide thin films for efficient electrocatalytic oxygen evolution reaction

Alternative Title

Abstract

High-entropy materials have garnered significant attention as possible non-noble metal-based electrocatalysts for the production of hydrogen via water electrolysis. High-entropy oxides demonstrate high activity and stability at relatively low costs. This study presents the synthesis and characterization of NiCoCuFeMoMnO x high-entropy oxide thin films deposited on graphite substrates via open-air pulsed laser deposition for electrocatalytic oxygen evolution reaction. The pulsed laser deposition process facilitates the oxidation of high-entropy alloy targets, forming a stable oxide phase. X-ray diffraction patterns reveal a mixture of amorphous (28.3%) and face-centered cubic crystalline (71.7%) phases. Morphological analysis using scanning electron microscopy and transmission electron microscopy shows a porous, flower-like structure, enhancing surface area and active site availability. Electrochemical measurements demonstrate significant improvements in oxygen evolution reaction performance with reduced overpotentials down to 180 +/- 7 mV to reach 10 mAcm-2 and enhanced reaction kinetics. The high-entropy oxide films maintain stability over 100 h, showing improved catalytic efficiency after long-term stability measurements. Electrochemically active surface area and electrochemical impedance spectroscopy analyses indicate increased active surface area and reduced charge transfer resistance. These results highlight NiCoCuFeMoMnO x high-entropy oxide films as promising robust electrocatalysts for efficient water splitting.

Source

Publisher

Amer Chemical Soc

Subject

Chemistry, Energy and fuels

Citation

Has Part

Source

Acs Applied Energy Materials

Book Series Title

Edition

DOI

10.1021/acsaem.5c00194

item.page.datauri

Link

Rights

CC BY (Attribution)

Copyrights Note

Creative Commons license

Except where otherwised noted, this item's license is described as CC BY (Attribution)

Endorsement

Review

Supplemented By

Referenced By

0

Views

1

Downloads

View PlumX Details