Publication:
The metamorphosis of λ-fold block designs with block size four into maximum packings of λkn with kites

Placeholder

Departments

School / College / Institute

Program

KU Authors

Co-Authors

N/A

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Let (X, B) be a λ-fold block design with block size four and define sets B(K) and E(K4\ K) as follows: for each block b ε B, remove a path of length two, obtain a kite (a triangle with a tail), and place the kites in B(K) and the paths of length 2 in E(K4\ K). If we can reassemble the edges belonging to E(K4\ K) into a collection of kites E(K) with leave L, then (X, B(K) ∪ E(K), L) is a packing of λK n with kites. If |L| is as small as possible, then (X, B(K) ∪ E(K), L) is called a metamorphosis of the λ-fold block design (X, B) into a maximum packing of λKn with kites. In this paper we give a complete solution of the metamorphosis problem for λ-fold block designs with block size four into a maximum packing of λKn with kites for all λ. That is, for each λ we determine the set of all n such that there exists a λ-fold block design of order n having a metamorphosis into a maximum packing of λKn with kites.

Source

Publisher

Utilitas Mathematica Academy

Subject

Mathematics

Citation

Has Part

Source

Utilitas Mathematica

Book Series Title

Edition

DOI

item.page.datauri

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads