Publication:
Integrating molecular simulations with machine learning guides in the design and synthesis of [bmim][bf(4)]/mof composites for co(2)/n(2) separation

Alternative Title

Abstract

Considering the existence of a large number and variety of metal-organic frameworks (MOFs) and ionic liquids (ILs), assessing the gas separation potential of all possible IL/MOF composites by purely experimental methods is not practical. In this work, we combined molecular simulations and machine learning (ML) algorithms to computationally design an IL/MOF composite. Molecular simulations were first performed to screen approximately 1000 different composites of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) with a large variety of MOFs for CO2 and N2 adsorption. The results of simulations were used to develop ML models that can accurately predict the adsorption and separation performances of [BMIM][BF4]/MOF composites. The most important features that affect the CO2/N2 selectivity of composites were extracted from ML and utilized to computationally generate an IL/MOF composite, [BMIM][BF4]/UiO-66, which was not present in the original material data set. This composite was finally synthesized, characterized, and tested for CO2/N2 separation. Experimentally measured CO2/N2 selectivity of the [BMIM][BF4]/UiO-66 composite matched well with the selectivity predicted by the ML model, and it was found to be comparable, if not higher than that of all previously synthesized [BMIM][BF4]/MOF composites reported in the literature. Our proposed approach of combining molecular simulations with ML models will be highly useful to accurately predict the CO2/N2 separation performances of any [BMIM][BF4]/MOF composite within seconds compared to the extensive time and effort requirements of purely experimental methods.

Source

Publisher

American Chemical Society

Subject

Biomedical engineering, Biotechnology

Citation

Has Part

Source

ACS Applied Materials and Interfaces

Book Series Title

Edition

DOI

10.1021/acsami.3c02130

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

5

Views

6

Downloads

View PlumX Details