Publication:
A subspace framework for H-infinity-norm minimization

Thumbnail Image

Departments

School / College / Institute

Program

KU-Authors

KU Authors

Co-Authors

Aliyev, Nicat
Benner, Peter
Voigt, Matthias

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

We deal with the minimization of the H-infinity-norm of the transfer function of a parameter-dependent descriptor system over the set of admissible parameter values. Subspace frameworks are proposed for such minimization problems where the involved systems are of large order. The proposed algorithms are greedy interpolatary approaches inspired by our recent work [Aliyev et al., SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1496-1516] for the computation of the H-infinity-norm. In this work, we minimize the H-infinity-norm of a reduced-order parameter-dependent system obtained by two-sided restrictions onto certain subspaces. Then we expand the subspaces so that Hermite interpolation properties hold between the full and reduced-order system at the optimal parameter value for the reduced-order system. We formally establish the superlinear convergence of the subspace frameworks under some smoothness and nondegeneracy assumptions. The fast convergence of the proposed frameworks in practice is illustrated by several large-scale systems.

Source

Publisher

Society for Industrial and Applied Mathematics (SIAM)

Subject

Mathematics, applied

Citation

Has Part

Source

SIAM Journal on Matrix Analysis and Applications

Book Series Title

Edition

DOI

10.1137/19M125892X

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

6

Downloads

View PlumX Details