Publication:
Chitosan-anthracene hydrogels as controlled stiffening networks

Placeholder

School / College / Institute

Organizational Unit
GRADUATE SCHOOL OF HEALTH SCIENCES
Upper Org Unit
Organizational Unit
Organizational Unit
Organizational Unit
SCHOOL OF MEDICINE
Upper Org Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

In this study, we report the synthesis of single and dual-crosslinked anthracene-functional chitosan-based hydrogels in the absence of toxic initiators. Single crosslinking was achieved through dimerization of anthracene, whereas dual-crosslinked hydrogel was formed through dimerization of anthracene and free radical photopolymerization of methacrylated-chitosan in the presence of non-toxic initiator riboflavin, a well-known vitamin B2. Both single and dual-crosslinked hydrogels were found to be elastic, as was determined through rheological analysis. We observed that the dual-crosslinked hydrogels exhibited higher Young's modulus than the single-crosslinked hydrogels, where the modulus for single and dual-crosslinked hydrogels were measured as 9.2 +/- 1.0 kPa and 26 +/- 2.8 kPa, respectively resulting in significantly high volume of cells in dual-crosslinked hydrogel (2.2 x 107 mu m3) compared to single-crosslinked (4.9 x 106 mu m3). Furthermore, we investigated the cytotoxicity of both hydrogels towards 3T3-J2 fibroblast cells through CellTiter-Glo assay. Finally, immunofluorescence staining was carried out to evaluate the impact of hydrogel modulus on cell morphology. This study comprehensively presents functionalization of chitosan with anthracene, uses nontoxic initiator riboflavin, modulates the degree of crosslinking through dimerization of anthracene and free radical photopolymerization, and further modulates cell behavior through the alterations of hydrogel properties.

Source

Publisher

Elsevier

Subject

Biochemistry, Molecular biology, Chemistry, Applied chemistry, Polymer science

Citation

Has Part

Source

International Journal of Biological Macromolecules

Book Series Title

Edition

DOI

10.1016/j.ijbiomac.2021.06.023

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details