Publication:
Emergence of near-infrared photoluminescence via ZnS shell growth on the AgBiS2 nanocrystals

dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorÖnal, Asım
dc.contributor.kuauthorKaya, Tarık Safa
dc.contributor.kuauthorMetin, Önder
dc.contributor.kuauthorNizamoğlu, Sedat
dc.contributor.otherDepartment of Chemistry
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.access2024-12-25
dc.date.accessioned2024-12-25T12:33:33Z
dc.date.available2024-12-25
dc.date.issued2024
dc.description.abstractAgBiS2 nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>105 cm(-1)), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS2 NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS2 NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine. Next, a zincblende ZnS shell with a low-lattice mismatch of 4.9% was grown on as-prepared AgBiS2 NCs via a highly reactive zinc (Zn(acac)(2)) precursor that led to a higher photoluminescence quantum yield (PLQY) of 15.3%, in comparison with a relatively low reactivity precursor (Zn(ac)(2)) resulting in reduced PLQY. The emission from AgBiS2 NCs with ultrastrong absorption, facilitated by shell growth, can open up new possibilities in lighting, display, and bioimaging.
dc.description.fulltextYes
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.formatPDF
dc.identifier.doi10.1021/acs.chemmater.4c02406
dc.identifier.essn1520-5002
dc.identifier.issn0897-4756
dc.identifier.quartileQ1
dc.identifier.urihttps://dx.doi.org/10.1021/acs.chemmater.4c02406
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21886
dc.keywordsPhotoluminescence
dc.keywordsPrecursors
dc.keywordsSulfur
dc.keywordsTransmission electron microscopy
dc.keywordsZinc
dc.languageen
dc.publisherAmerican Chemical Society
dc.sourceChemistry of Materials
dc.subjectChemistry
dc.subjectPhysical chemistry
dc.subjectMaterials science
dc.titleEmergence of near-infrared photoluminescence via ZnS shell growth on the AgBiS2 nanocrystals
dc.type.publicationtypeJournal article
dspace.entity.typePublication
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04472.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format