Publication:
Screening/Diagnosing Sarcopenia with Machine Learning-Powered Risk Assessment: The SARCO X Study

dc.contributor.coauthorKara, Murat
dc.contributor.coauthorCeran, Yasin
dc.contributor.coauthorAnalay, Pelin
dc.contributor.coauthorAksakal, Mahmud Fazil
dc.contributor.coauthorDurmus, Mahmut Esad
dc.contributor.coauthorTiftik, Tuelay
dc.contributor.coauthorCitir, Beyzanur
dc.contributor.coauthorSener, Fatima Edibe
dc.contributor.coauthorYilmaz, Mehmet Emin
dc.contributor.coauthorCoskun, Evrim
dc.contributor.coauthorUnlu, Zeliha
dc.contributor.coauthorYildirim, Pelin
dc.contributor.coauthorGurcay, Eda
dc.contributor.coauthorGuvener, Orhan
dc.contributor.coauthorVaran, Hacer Dogan
dc.contributor.coauthorCeker, Eda
dc.contributor.coauthorCataltepe, Esra
dc.contributor.coauthorGungor, Fatih
dc.contributor.coauthorTaskiran, Ozden Ozyemisci
dc.contributor.coauthorKulcu, Duygu Keler
dc.contributor.coauthorYorulmaz, Elem
dc.contributor.coauthorPalamar, Deniz
dc.contributor.coauthorKasim, Buesra
dc.contributor.coauthorKeceli, Can
dc.contributor.coauthorKilic, Gamze
dc.contributor.coauthorSongur, Kadir
dc.contributor.coauthorDilek, Banu
dc.contributor.coauthorMalas, Fevziye Unsal
dc.contributor.coauthorKarabulut, Mustafa
dc.contributor.coauthorAbdulsalam, Ahmad J.
dc.contributor.coauthorRazaq, Sarah
dc.contributor.coauthorBarbosa, Jorge
dc.contributor.coauthorMezian, Kamal
dc.contributor.coauthorBaday, Murat
dc.contributor.coauthorKara, Ozgur
dc.contributor.coauthorKaymak, Bayram
dc.contributor.coauthorCakir, Banu
dc.contributor.coauthorOzcakar, Levent
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorFaculty Member, Taşkıran, Özden Özyemişçi
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2025-09-10T04:59:06Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractObjectives: Sarcopenia imposes significant morbidity and economic burden on health care systems, underscoring the critical need for early/effective screening and diagnosis. This study aimed to develop machine learning (ML)-based algorithm to facilitate the screening/diagnosis of sarcopenia. Design: A cross-sectional case-control study. Setting and Participants: This multicenter study enrolled subJects aged >= 45 years. Methods: Demographic data such as age, weight, height, education/exercise status, smoking, and co-morbid diseases were obtained. Sarcopenia was diagnosed using the basic and ML-based algorithms, which incorporate low quadriceps muscle mass/thickness, combined with prolonged chair stand test (CST) duration and/or reduced hand grip strength (HGS). Results: Of 5649 participants (1379 males, 24.4%), 1097 of them (19.4%) were sarcopenic. Using the ML-based model, significantly associated factors with sarcopenia were age, weight, height, education level, exercise status, and presence of hypertension and diabetes mellitus. Of the various ML models, the Gradient Boosting Classifier (GBC) demonstrated the highest performance in predicting sarcopenia in the holdout test data. For the ML-augmented algorithm, the recall value was 0.979; the precision value was 0.926, and the accuracy value was 0.980 for making the diagnosis of sarcopenia. When compared with the basic sarcopenia algorithm, the ML-augmented algorithm further decreased the need for HGS and ultrasound by 38.1% and 49.5%, respectively, demonstrating its effectiveness in optimizing sarcopenia diagnosis while minimizing testing required for medical device(s). Conclusions and Implications: The ML-based algorithm significantly reduces the need for testing/imaging in the diagnosis of sarcopenia. It facilitates the identification of sarcopenia particularly in the primary and secondary care settings and decreases the number of individuals who should be referred for further evaluation. (c) 2025 Post-Acute and Long-Term Care Medical Association.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume26
dc.identifier.doi10.1016/j.jamda.2025.105683
dc.identifier.eissn1538-9375
dc.identifier.embargoNo
dc.identifier.issn1525-8610
dc.identifier.issue7
dc.identifier.quartileN/A
dc.identifier.urihttps://doi.org/10.1016/j.jamda.2025.105683
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30394
dc.identifier.wos001503741700001
dc.keywordsQuadriceps muscle
dc.keywordsultrasound
dc.keywordshealth care costs
dc.keywordsartificial intelligence
dc.keywordshand grip strength
dc.language.isoeng
dc.publisherElsevier Science Inc
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofJournal of the american medical directors association
dc.subjectGeriatrics & Gerontology
dc.titleScreening/Diagnosing Sarcopenia with Machine Learning-Powered Risk Assessment: The SARCO X Study
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files