Publication:
The noisy channel mode for unsupervised word sense disambiguation

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYüret, Deniz
dc.contributor.kuauthorYatbaz, Mehmet Ali
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid179996
dc.contributor.yokid192506
dc.date.accessioned2024-11-09T13:53:36Z
dc.date.issued2010
dc.description.abstractWe introduce a generative probabilistic model, the noisy channel model, for unsupervised word sense disambiguation. In our model, each context C is modeled as a distinct channel through which the speaker intends to transmit a particular meaning S using a possibly ambiguous word W. To reconstruct the intended meaning the hearer uses the distribution of possible meanings in the given context P(S|C) and possible words that can express each meaning P(W|S). We assume P(W|S) is independent of the context and estimate it using WordNet sense frequencies. The main problem of unsupervised WSD is estimating context-dependent P(S|C) without access to any sense-tagged text. We show one way to solve this problem using a statistical language model based on large amounts of untagged text. Our model uses coarse-grained semantic classes for S internally and we explore the effect of using different levels of granularity on WSD performance. The system outputs fine-grained senses for evaluation, and its performance on noun disambiguation is better than most previously reported unsupervised systems and close to the best supervised systems.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionPublisher version
dc.description.volume36
dc.formatpdf
dc.identifier.doi10.1162/coli.2010.36.1.36103
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00489
dc.identifier.issn0891-2017
dc.identifier.linkhttps://doi.org/10.1162/coli.2010.36.1.36103
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-77049109829
dc.identifier.urihttps://hdl.handle.net/20.500.14288/4019
dc.identifier.wos275310400004
dc.languageEnglish
dc.publisherMassachusetts Institute of Technology (MIT) Press
dc.relation.grantno1.08E+230
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/559
dc.sourceComputational Linguistics
dc.subjectPhysics
dc.titleThe noisy channel mode for unsupervised word sense disambiguation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-7039-0046
local.contributor.authoridN/A
local.contributor.kuauthorYüret, Deniz
local.contributor.kuauthorYatbaz, Mehmet Ali
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
559.pdf
Size:
248.25 KB
Format:
Adobe Portable Document Format