Publication:
Sharp strong convergence in ideal flows

dc.contributor.coauthorMagana, Marc
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorHouamed, Haroune
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2026-01-16T08:47:05Z
dc.date.available2026-01-16
dc.date.issued2025
dc.description.abstractWe investigate the strong convergence of weak solutions to the two-dimensional quasi-geostrophic shallow-water (QGSW) equation as the inverse Rossby radius tends to zero. In this limit, we recover the Yudovich solution of the incompressible Euler equations. We prove that the vorticity convergence holds in (LtLxp)-L-infinity, for any finite integrability exponent p<infinity. This extends to the case p=infinity provided that the initial vorticities are continuous and converge uniformly. We also discuss the sharpness of this limit by demonstrating that the continuity assumption on the initial data is necessary for the endpoint convergence in L-t,x(infinity). The proof of the strong convergence relies on the Extrapolation Compactness method, recently introduced by Arsenio and the first author to address similar stability questions for the Euler equations. The approach begins with establishing the convergence in a lower regularity space, at first. Then, in a later step, the convergence to Yudovich's vorticity of Euler equations in Lebesgue spaces comes as a consequence of a careful analysis of the evanescence of specific high Fourier modes of the QGSW vorticity. A central challenge arises from the absence of a velocity formulation for QGSW, which we overcome by employing advanced tools from Littlewood Paley theory in endpoint settings. The sharpness of the convergence in the endpoint L-t,x(infinity) case is obtained in the context of vortex patches, drawing insights from key findings on uniformly rotating and stationary solutions of active scalar equations.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMinisterio de Ciencia, Innovacin y Universidades [PID2020-112881GB-I00]
dc.identifier.doi10.1088/1361-6544/ae25b0
dc.identifier.eissn1361-6544
dc.identifier.embargoNo
dc.identifier.issn0951-7715
dc.identifier.issue12
dc.identifier.quartileQ2
dc.identifier.urihttps://doi.org/10.1088/1361-6544/ae25b0
dc.identifier.urihttps://hdl.handle.net/20.500.14288/32123
dc.identifier.volume38
dc.identifier.wos001643354500001
dc.keywordsStrong compactness
dc.keywordsSharp convergence
dc.keywordsYudovich solutions
dc.keywordsIncompressible flows
dc.language.isoeng
dc.publisherIop publishing ltd
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofNonlinearity
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectMathematics, Applied
dc.subjectPhysics, Mathematical
dc.titleSharp strong convergence in ideal flows
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameHouamed
person.givenNameHaroune
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files