Publication:
Label-free identification of exosomes using raman spectroscopy and machine learning

dc.contributor.coauthorParlatan, Uğur
dc.contributor.coauthorÖzen, Mehmet Özgün
dc.contributor.coauthorKeçoğlu, İbrahim
dc.contributor.coauthorKoyuncu, Batuhan
dc.contributor.coauthorKhalafkhany, Davod
dc.contributor.coauthorLoc, Irem
dc.contributor.coauthorÖğüt, Mehmet Giray
dc.contributor.coauthorİnci, Fatih
dc.contributor.coauthorDemir, Akın
dc.contributor.coauthorÖzören, Nesrin
dc.contributor.coauthorÜnlü, Mehmet Burçin
dc.contributor.coauthorDemirci, Utkan
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSolaroğlu, İhsan
dc.contributor.kuauthorTorun, Hülya
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T23:11:59Z
dc.date.issued2023
dc.description.abstractExosomes, nano-sized extracellular vesicles (EVs) secreted from cells, carry various cargo molecules reflecting their cells of origin. As EV content, structure, and size are highly heterogeneous, their classification via cargo molecules by determining their origin is challenging. Here, a method is presented combining surface-enhanced Raman spectroscopy (SERS) with machine learning algorithms to employ the classification of EVs derived from five different cell lines to reveal their cellular origins. Using an artificial neural network algorithm, it is shown that the label-free Raman spectroscopy method's prediction ratio correlates with the ratio of HT-1080 exosomes in the mixture. This machine learning-assisted SERS method enables a new direction through label-free investigation of EV preparations by differentiating cancer cell-derived exosomes from those of healthy. This approach will potentially open up new avenues of research for early detection and monitoring of various diseases, including cancer.
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.indexedbyWOS
dc.description.issue9
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume19
dc.identifier.doi10.1002/smll.202205519
dc.identifier.issn1613-6810
dc.identifier.scopus2-s2.0-85146341410
dc.identifier.urihttps://doi.org/10.1002/smll.202205519
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9740
dc.identifier.wos915787700001
dc.keywordsExosome
dc.keywordsExtracellular vesicles
dc.keywordsNeural networks
dc.keywordsRaman spectroscopy
dc.keywordsCell culture
dc.keywordsCells
dc.keywordsDiseases
dc.keywordsLearning algorithms
dc.keywordsMachine learning
dc.keywordsMolecules
dc.keywordsNeural networks
dc.keywordsSpectroscopic analysis
dc.keywordsCargo molecules
dc.keywordsContent structure
dc.keywordsExosomes
dc.keywordsExtracellular
dc.keywordsExtracellular vesicle
dc.keywordsLabel free
dc.keywordsMachine-learning
dc.keywordsNano sized
dc.keywordsNeural-networks
dc.keywordsSurface enhanced Raman spectroscopy
dc.keywordsRaman spectroscopy
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.ispartofSmall
dc.subjectChemistry
dc.subjectPhysics
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials Science, Condensed matter
dc.titleLabel-free identification of exosomes using raman spectroscopy and machine learning
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorTorun, Hülya
local.contributor.kuauthorSolaroğlu, İhsan
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1Research Center
local.publication.orgunit2KUTTAM (Koç University Research Center for Translational Medicine)
local.publication.orgunit2School of Medicine
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscovery91bbe15d-017f-446b-b102-ce755523d939
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files