Publication:
Geometric phases, symmetries of dynamical invariants and exact solution of the Schrodinger equation

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMostafazadeh, Ali
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid4231
dc.date.accessioned2024-11-09T23:51:23Z
dc.date.issued2001
dc.description.abstractWe introduce the notion of the geometrically equivalent quantum systems (GEQSs) as quantum systems that lead to the same geometric phases for a given complete set of initial state vectors. We give a characterization of the GEQSs. These systems have a common dynamical invariant, and their Hamiltonians and evolution operators are related by symmetry transformations of the invariant. If the invariant is T-periodic, the corresponding class of GEQSs includes a system with a T-periodic Hamiltonian. We apply our general results to study the classes of GEQSs that include a system with a cranked Hamiltonian H (t) = e(-iKt)H(0)e(iKt). We show that die cranking operator K also belongs to this class. Hence, in spite of the fact that it is time independent, it leads to nontrivial cyclic evolutions and geometric phases. Our analysis allows for an explicit construction of a complete set of nonstationary cyclic states of any time-independent simple harmonic oscillator. The period of these cyclic states is half the characteristic period of the oscillator.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue32
dc.description.openaccessYES
dc.description.volume34
dc.identifier.doi10.1088/0305-4470/34/32/312
dc.identifier.issn0305-4470
dc.identifier.scopus2-s2.0-0035903074
dc.identifier.urihttp://dx.doi.org/10.1088/0305-4470/34/32/312
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14694
dc.identifier.wos170785700013
dc.keywordsQuantum canonical-transformations
dc.keywordsBerry phases
dc.keywordsEvolution
dc.languageEnglish
dc.publisherIop Publishing Ltd
dc.sourceJournal of Physics A: Mathematical and General
dc.subjectPhysics
dc.subjectMathematical physics
dc.titleGeometric phases, symmetries of dynamical invariants and exact solution of the Schrodinger equation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-0739-4060
local.contributor.kuauthorMostafazadeh, Ali
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files