Publication:
Blowing up light: a nonlinear amplification scheme for electromagnetic waves

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

Advisor

Publication Date

2018

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

We use the blow-up solutions of nonlinear Helmholtz equations to introduce a nonlinear resonance effect that is capable of amplifying electromagnetic waves of a particular intensity. To achieve this, we propose a scattering setup consisting of a Kerr slab with a negative (defocusing) Kerr constant placed to the left of a linear slab in such a way that a left-incident coherent transverse electric wave with a specific incidence angle and intensity realizes a blow-up solution of the corresponding Helmholtz equation whenever its wavenumber k takes a certain critical value, k(*). For k = k(*), the solution blows up at the right-hand boundary of the Kerr slab. For k < k(*), the setup defines a scattering system with a transmission coefficient that diverges as (k - k(*))(-4) for k -> k(*). By tuning the distance between the slabs, we can use this setup to amplify coherent waves with a wavelength in an extremely narrow spectral band. For nearby wavelengths, the setup serves as a filter. Our analysis makes use of a nonlinear generalization of the transfer matrix of the scattering theory as well as properties of unidirectionally invisible potentials.

Description

Source:

Journal of the Optical Society of America B

Publisher:

Optical Society of America (OSA)

Keywords:

Subject

Optics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details