Publication:
Discriminative vs. generative approaches in semantic role labeling

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYüret, Deniz
dc.contributor.kuauthorYatbaz, Mehmet Ali
dc.contributor.kuauthorUral, Ahmet Engin
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileMaster Student
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid179996
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:09:59Z
dc.date.issued2008
dc.description.abstractThis paper describes the two algorithms we developed for the CoNLL 2008 Shared Task "Joint learning of syntactic and semantic dependencies". Both algorithms start parsing the sentence using the same syntactic parser. The first algorithm uses machine learning methods to identify the semantic dependencies in four stages: identification and labeling of predicates, identification and labeling of arguments. The second algorithm uses a generative probabilistic model, choosing the semantic dependencies that maximize the probability with respect to the model. A hybrid algorithm combining the best stages of the two algorithms attains 86.62% labeled syntactic attachment accuracy, 73.24% labeled semantic dependency F1 and 79.93% labeled macro F1 score for the combined WSJ and Brown test sets.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.3115/1596324.1596364
dc.identifier.isbn1905-5934-81
dc.identifier.isbn9781-9055-9348-4
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84865079295anddoi=10.3115%2f1596324.1596364andpartnerID=40andmd5=4a86351036a5845aa92ceb364a6c1763
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84865079295
dc.identifier.urihttp://dx.doi.org/10.3115/1596324.1596364
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9379
dc.keywordsLearning algorithms
dc.keywordsNatural language processing systems
dc.keywordsSemantics
dc.keywordsSyntactics
dc.keywordsF1 scores
dc.keywordsHybrid algorithms
dc.keywordsJoint learning
dc.keywordsMachine learning methods
dc.keywordsProbabilistic modeling
dc.keywordsSemantic dependency
dc.keywordsSemantic role labeling
dc.keywordsSyntactic parsers
dc.keywordsMachine learning
dc.languageEnglish
dc.publisherAssociation for Computational Linguistics (ACL)
dc.sourceCoNLL 2008 - Proceedings of the Twelfth Conference on Computational Natural Language Learning
dc.subjectComputer engineering
dc.titleDiscriminative vs. generative approaches in semantic role labeling
dc.title.alternativeBeşeri capital ve sıralama modellerine yeni bir bakış
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7039-0046
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorYüret, Deniz
local.contributor.kuauthorYatbaz, Mehmet Ali
local.contributor.kuauthorUral, Ahmet Engin
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files