Publication: Discriminative vs. generative approaches in semantic role labeling
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.kuauthor | Yüret, Deniz | |
dc.contributor.kuauthor | Yatbaz, Mehmet Ali | |
dc.contributor.kuauthor | Ural, Ahmet Engin | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | 179996 | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:09:59Z | |
dc.date.issued | 2008 | |
dc.description.abstract | This paper describes the two algorithms we developed for the CoNLL 2008 Shared Task "Joint learning of syntactic and semantic dependencies". Both algorithms start parsing the sentence using the same syntactic parser. The first algorithm uses machine learning methods to identify the semantic dependencies in four stages: identification and labeling of predicates, identification and labeling of arguments. The second algorithm uses a generative probabilistic model, choosing the semantic dependencies that maximize the probability with respect to the model. A hybrid algorithm combining the best stages of the two algorithms attains 86.62% labeled syntactic attachment accuracy, 73.24% labeled semantic dependency F1 and 79.93% labeled macro F1 score for the combined WSJ and Brown test sets. | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.identifier.doi | 10.3115/1596324.1596364 | |
dc.identifier.isbn | 1905-5934-81 | |
dc.identifier.isbn | 9781-9055-9348-4 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865079295anddoi=10.3115%2f1596324.1596364andpartnerID=40andmd5=4a86351036a5845aa92ceb364a6c1763 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-84865079295 | |
dc.identifier.uri | http://dx.doi.org/10.3115/1596324.1596364 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/9379 | |
dc.keywords | Learning algorithms | |
dc.keywords | Natural language processing systems | |
dc.keywords | Semantics | |
dc.keywords | Syntactics | |
dc.keywords | F1 scores | |
dc.keywords | Hybrid algorithms | |
dc.keywords | Joint learning | |
dc.keywords | Machine learning methods | |
dc.keywords | Probabilistic modeling | |
dc.keywords | Semantic dependency | |
dc.keywords | Semantic role labeling | |
dc.keywords | Syntactic parsers | |
dc.keywords | Machine learning | |
dc.language | English | |
dc.publisher | Association for Computational Linguistics (ACL) | |
dc.source | CoNLL 2008 - Proceedings of the Twelfth Conference on Computational Natural Language Learning | |
dc.subject | Computer engineering | |
dc.title | Discriminative vs. generative approaches in semantic role labeling | |
dc.title.alternative | Beşeri capital ve sıralama modellerine yeni bir bakış | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-7039-0046 | |
local.contributor.authorid | N/A | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Yüret, Deniz | |
local.contributor.kuauthor | Yatbaz, Mehmet Ali | |
local.contributor.kuauthor | Ural, Ahmet Engin | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |