Publication:
Inequalities between sums over prime numbers in progressions

Placeholder

Departments

School / College / Institute

Program

KU-Authors

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

We investigate a new type of tendency between two progressions of prime numbers which is in support of the claim that prime numbers that are congruent to 3 modulo 4 are favored over prime numbers that are congruent to 1 modulo 4. In particular, we show that the Riemann hypothesis for the correspondingL-function is equivalent to the occurrence of such a tendency. A generalization to teams of progressions of prime numbers is given, where the teams are formed by grouping according to the values of a quadratic character. In this way, it is shown that there is a tendency favoring prime numbers belonging to progressions arising from the quadratic nonresidues modulo a prime number congruent to 3 or 5 modulo 8. The scope of the tendency is extended conditionally, either by assuming the Riemann hypothesis for certain DirichletL-functions or by the presence of Siegel zeros. Our approach requires numerical verifications over certain ranges of the parameters, and in this respect, we freely benefit from computer software to carry out such tasks. Lastly, the divisor function is seen to be favorable over its average value along semigroups by comparing partial sums of the associated Dirichlet series.

Source

Publisher

Springer International Publishing Ag

Subject

Mathematics

Citation

Has Part

Source

Research In Number Theory

Book Series Title

Edition

DOI

10.1007/s40993-020-00211-3

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details