Publication:
Machine learning aided NR-V2X quality of service predictions

dc.contributor.coauthorKaraağaç, Sercan
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorReyhanoğlu, Aslıhan
dc.contributor.kuauthorKar, Emrah
dc.contributor.kuauthorKümeç, Feyzi Ege
dc.contributor.kuauthorKara, Yahya Şükür Can
dc.contributor.kuauthorTuran, Buğra
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.unitKoc University Ford Otosan Automotive Technologies Laboratory (KUFOTAL)
dc.date.accessioned2024-12-29T09:36:02Z
dc.date.issued2023
dc.description.abstractVehicle-to-Everything Communication (V2X) technologies aim to meet strict quality-of-service (QoS) requirements of vehicular connectivity applications such as safety message exchange, remote driving, and sensor data sharing. The high reliability requirement is particularly important to enable safety relevant applications. Thus, predicting QoS levels becomes key to ensure the reliability of the connected vehicle applications. Recently, machine learning (ML) algorithms are demonstrated to provide dependable predictions to plan, simulate, and evaluate the performance of vehicular networks. In this paper, we propose ML aided New Radio (NR)-V2X QoS predictions scheme to provide Packet Delivery Ratio (PDR) and throughput predictions with the input of Modulation and Coding Schemes (MCS), distance-to-base station, Signal to Interference plus Noise Ratio (SINR), and packet size. Seven different ML algorithms based prediction models are trained and evaluated by using NR-V2X simulation data. We provide performance comparisons between Support Vector Regression (SVR), Deep Neural Network (DNN), Random Forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light GBM (LGBM) for predicting throughput and PDR. We demonstrate that CatBoost and RF are the best performing algorithms to predict throughput and PDR of NR-V2X networks, respectively.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/VNC57357.2023.10136346
dc.identifier.eissn2157-9865
dc.identifier.isbn979-8-3503-3549-1
dc.identifier.issn2157-9857
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85163200328
dc.identifier.urihttps://doi.org/10.1109/VNC57357.2023.10136346
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21909
dc.identifier.wos1011821500038
dc.keywordsGradient boosting
dc.keywordsMachine learning algorithms
dc.keywordsMachine-learning
dc.keywordsMessage exchange
dc.keywordsPacket delivery ratio
dc.keywordsQuality-of-service
dc.keywordsRandom forests
dc.keywordsSafety messages
dc.keywordsService requirements
dc.keywordsVehicular connectivities
dc.languageen
dc.publisherIEEE
dc.source2023 IEEE Vehicular Networking Conference, VNC
dc.subjectComputer science
dc.subjectHardware and architecture
dc.subjectInformation systems
dc.subjectTelecommunications
dc.subjectTransportation science and technology
dc.titleMachine learning aided NR-V2X quality of service predictions
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorReyhanoğlu, Aslıhan
local.contributor.kuauthorKar, Emrah
local.contributor.kuauthorKümeç, Feyzi Ege
local.contributor.kuauthorKara, Yahya Şükür Can
local.contributor.kuauthorTuran, Buğra
local.contributor.kuauthorErgen, Sinem Çöleri
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files