Publication: A subspace method for large-scale eigenvalue optimization
Files
Program
KU-Authors
KU Authors
Co-Authors
Meerbergen, Karl
Michiels, Wim
Advisor
Publication Date
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Abstract
We consider the minimization or maximization of the Jth largest eigenvalue of an analytic and Hermitian matrix-valued function, and build on Mengi, Yildirim, and Kilic [SIAM T. Matrix Anal. Appl., 35, pp. 699-724, 2014]. This work addresses the setting when the matrix-valued function involved is very large. We describe subspace procedures that convert the original problem into a small-scale one by means of orthogonal projections and restrictions to certain subspaces, and that gradually expand these subspaces based on the optimal solutions of small-scale problems. Global convergence and superlinear rate-of-convergence results with respect to the dimensions of the subspaces are presented in the infinite dimensional setting, where the matrix-valued function is replaced by a compact operator depending on parameters. In practice, it suffices to solve eigenvalue optimization problems involving matrices with sizes on the scale of tens, instead of the original problem involving matrices with sizes on the scale of thousands.
Source:
SIAM Journal on Matrix Analysis and Applications
Publisher:
Society for Industrial and Applied Mathematics (SIAM)
Keywords:
Subject
Mathematics, applied