Publication:
FR4-based electromagnetic energy harvester for wireless sensor nodes

Placeholder

Program

KU Authors

Co-Authors

N/A

Advisor

Publication Date

Language

English

Journal Title

Journal ISSN

Volume Title

Abstract

Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 mu W with 15 m s(-2) acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high-g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire-road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature.

Source:

Smart Materials and Structures

Publisher:

IOP Publishing Ltd

Keywords:

Subject

Instruments and instrumentation, Materials science

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyrights Note

0

Views

0

Downloads

View PlumX Details