Publication:
Deep stroke-based sketched symbol reconstruction and segmentation

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

Advisor

Publication Date

2020

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

Hand-drawn objects usually consist of multiple semantically meaningful parts. In this article, we propose a neural network model that segments sketched symbols into stroke-level components. Our segmentation framework has two main elements: a fixed feature extractor and a multilayer perceptron (MLP) network that identifies a component based on the feature. As the feature extractor we utilize an encoder of a stroke-rnn, which is our newly proposed generative variational auto-encoder (VAE) model that reconstructs symbols on a stroke-by-stroke basis. Experiments show that a single encoder could be reused for segmenting multiple categories of sketched symbols with negligible effects on segmentation accuracies. Our segmentation scores surpass existing methodologies on an available small state-of-the-art dataset. Moreover, extensive evaluations on our newly annotated big dataset demonstrate that our framework obtains significantly better accuracies as compared to baseline models. We release the dataset to the community.

Description

Source:

IEEE Computer Graphics and Applications

Publisher:

Institute of Electrical and Electronics Engineers (IEEE)

Keywords:

Subject

Computer science, software engineering

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details