Publication:
Deep stroke-based sketched symbol reconstruction and segmentation

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorSezgin, Tevfik Metin
dc.contributor.kuauthorKaiyrbekov, Kurmanbek
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid18632
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:27:11Z
dc.date.issued2020
dc.description.abstractHand-drawn objects usually consist of multiple semantically meaningful parts. In this article, we propose a neural network model that segments sketched symbols into stroke-level components. Our segmentation framework has two main elements: a fixed feature extractor and a multilayer perceptron (MLP) network that identifies a component based on the feature. As the feature extractor we utilize an encoder of a stroke-rnn, which is our newly proposed generative variational auto-encoder (VAE) model that reconstructs symbols on a stroke-by-stroke basis. Experiments show that a single encoder could be reused for segmenting multiple categories of sketched symbols with negligible effects on segmentation accuracies. Our segmentation scores surpass existing methodologies on an available small state-of-the-art dataset. Moreover, extensive evaluations on our newly annotated big dataset demonstrate that our framework obtains significantly better accuracies as compared to baseline models. We release the dataset to the community.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipBIDEB-2215 Program
dc.description.versionAuthor's final manuscript
dc.description.volume40
dc.formatpdf
dc.identifier.doi10.1109/MCG.2019.2943333
dc.identifier.eissn1558-1756
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03095
dc.identifier.issn0272-1716
dc.identifier.linkhttps://doi.org/10.1109/MCG.2019.2943333
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85073151465
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1737
dc.identifier.wos508378800012
dc.keywordsImage segmentation
dc.keywordsNeural networks
dc.keywordsImage reconstruction
dc.keywordsComputational modeling
dc.keywordsFeature extraction
dc.keywordsTask analysis
dc.keywordsStroke (medical condition)
dc.keywordsSketching
dc.keywordsNeural networks
dc.keywordsSegmentation
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9753
dc.sourceIEEE Computer Graphics and Applications
dc.subjectComputer science, software engineering
dc.titleDeep stroke-based sketched symbol reconstruction and segmentation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-1524-1646
local.contributor.authoridN/A
local.contributor.kuauthorSezgin, Tevfik Metin
local.contributor.kuauthorKaiyrbekov, Kurmanbek
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9753.pdf
Size:
2.83 MB
Format:
Adobe Portable Document Format