Publication:
Narrow escape problem in synaptic molecular communications

dc.contributor.coauthorKoca, Çağlar
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorAkan, Özgür Barış
dc.contributor.kuauthorCivaş, Meltem
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid6647
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:54:27Z
dc.date.issued2022
dc.description.abstractThe narrow escape problem (NEP) is a well-known problem with many applications in cellular biology. It is especially important to understand synaptic molecular communications. Active regions of synapses, also known as apposition zones, are connected to synaptic cleft through narrow slits, from which neurotransmitters can escape to or return from the cleft into the apposition zones. While neurotransmitters leakage into the cleft might be desired for the reuptake process, escaping neurotransmitters might trigger an undesired, i.e., false-positive or action potential in the post-synaptic terminal. Obtaining analytic solutions to NEPs is very challenging due to its geometry dependency. Slight alterations in either or both shape or the size of the hole and the outer volume may cause drastic changes in the solution. Thus, we need a simulation-based approach to solve NEPs. However, NEP also requires the size of the hole to be much smaller than the dimensions of the volume. Combined with the requirement for Brownian motion, where the step size is much smaller than the dimensions of the volume, simulations can be prohibitively long, even for modern computers. Therefore, in this work, we suggest a simulation algorithm that simultaneously satisfies the NEP and Brownian motion simulation requirements. Our simulation framework can be used to quantify the neurotransmitter leakage within synaptic clefts.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1145/3558583.3558856
dc.identifier.isbn9781-4503-9867-1
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85139819137&doi=10.1145%2f3558583.3558856&partnerID=40&md5=12f2beabe51df098efe0f8b66f323251
dc.identifier.scopus2-s2.0-85139819137
dc.identifier.urihttps://dx.doi.org/10.1145/3558583.3558856
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15193
dc.identifier.wos1117699300016
dc.keywordsBrownian motion
dc.keywordsBrownian motion simulation
dc.keywordsMolecular communication
dc.keywordsNarrow escape problem
dc.keywordsSynaptic communication
dc.keywordsCytology
dc.keywordsNeurophysiology
dc.keywordsActive regions
dc.keywordsBrownian motion simulation
dc.keywordsCellular biology
dc.keywordsEscape problem
dc.keywordsMolecular communication
dc.keywordsMotion simulations
dc.keywordsNarrow escape problem
dc.keywordsNarrow slits
dc.keywordsSynaptic cleft
dc.keywordsSynaptic communication
dc.keywordsBrownian movement
dc.languageEnglish
dc.publisherAssociation for Computing Machinery, Inc
dc.sourceProceedings of the 9th ACM International Conference on Nanoscale Computing and Communication, NANOCOM 2022
dc.subjectBioinformatics
dc.subjectMolecules
dc.subjectCommunication
dc.subjectBiochemistry
dc.titleNarrow escape problem in synaptic molecular communications
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-2523-3858
local.contributor.authoridN/A
local.contributor.kuauthorAkan, Özgür Barış
local.contributor.kuauthorCivaş, Meltem
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files