Publication:
Optimization of laser-wavelength dependence for open-air atmospheric pressure pulsed laser deposition of AlCrFeMnTi high-entropy alloy for tailored surface properties

Thumbnail Image

School / College / Institute

Organizational Unit
Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

High-entropy alloys (HEAs) have garnered significant attention in different fields due to their exceptional mechanical and physical properties, making them promising candidates for various applications. Several techniques, including physical vapor deposition and pulsed laser deposition (PLD), have been employed for the fabrication of HEA thin films. In this study, we explore a novel approach to synthesizing the lightweight HEA (LWHEA) AlCrFeMnTi using PLD in air at atmospheric pressure with a particular focus on the influence of the laser wavelength on the deposition process and the resulting alloy characteristics. This research investigates the impact of different laser wavelengths on the LWHEA's characterization and the optimization of laser wavelength dependence in air at atmospheric pressure PLD of LWHEA AlCrFeMnTi for tailored surface properties such as phase composition, microstructure, and corrosion resistance. Systematically varying the laser wavelength was attempted to optimize the deposition conditions. This was aimed at achieving enhanced properties and precise control over the alloy's composition. This work contributes to a deeper understanding of the open air PLD process for LWHEAs and sheds light on the role of the laser wavelength in tailoring their properties, which can have significant implications for the development of advanced materials for aerospace, automotive, and other high-performance applications. Ultimately, this research aims to provide valuable insights into the design and fabrication of LWHEAs with tailored properties through laser-based deposition techniques.

Source

Publisher

American Chemical Society

Subject

Chemistry, multidisciplinary

Citation

Has Part

Source

ACS Omega

Book Series Title

Edition

DOI

10.1021/acsomega.4c03245

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

4

Views

5

Downloads

View PlumX Details