Publication: AI-KU at SemEval-2016 task 11: word embeddings and substring features for complex word identification
Program
KU-Authors
KU Authors
Co-Authors
N/A
Advisor
Publication Date
2016
Language
English
Type
Conference proceeding
Journal Title
Journal ISSN
Volume Title
Abstract
We investigate the usage of word embeddings, namely Glove and SCODE, along with substring features on Complex Word Identification task. We introduce two systems: the first system utilizes the word embeddings of the target word and its substrings as features while the other considers the context information by using the embeddings of the surrounding words as well. Although the proposed representations perform below the average with nonlinear models, we show that word embeddings with substring features is an effective representation choice when employed with linear classifiers.
Description
Source:
SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings
Publisher:
Association for Computational Linguistics (ACL)
Keywords:
Subject
Computer science, Artificial intelligence