Publication: AI-KU at SemEval-2016 task 11: word embeddings and substring features for complex word identification
dc.contributor.coauthor | N/A | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Kuru, Onur | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.researchcenter | Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI) | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-10T00:02:31Z | |
dc.date.issued | 2016 | |
dc.description.abstract | We investigate the usage of word embeddings, namely Glove and SCODE, along with substring features on Complex Word Identification task. We introduce two systems: the first system utilizes the word embeddings of the target word and its substrings as features while the other considers the context information by using the embeddings of the surrounding words as well. Although the proposed representations perform below the average with nonlinear models, we show that word embeddings with substring features is an effective representation choice when employed with linear classifiers. | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsorship | ACL Special Interest Group on the Lexicon (SIGLEX) | |
dc.identifier.doi | 10.18653/v1/s16-1163 | |
dc.identifier.isbn | 9781-9416-4395-2 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035788781&doi=10.18653%2fv1%2fs16-1163&partnerID=40&md5=7f069866a3655992a15ad7457db0f224 | |
dc.identifier.scopus | 2-s2.0-85035788781 | |
dc.identifier.uri | http://dx.doi.org/10.18653/v1/s16-1163 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/16160 | |
dc.keywords | Semantics | |
dc.keywords | Context information | |
dc.keywords | First systems | |
dc.keywords | Linear classifiers | |
dc.keywords | Non-linear model | |
dc.keywords | Sub-strings | |
dc.keywords | Substring | |
dc.keywords | Target words | |
dc.keywords | Word identification | |
dc.keywords | Embeddings | |
dc.language | English | |
dc.publisher | Association for Computational Linguistics (ACL) | |
dc.source | SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings | |
dc.subject | Computer science | |
dc.subject | Artificial intelligence | |
dc.title | AI-KU at SemEval-2016 task 11: word embeddings and substring features for complex word identification | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Kuru, Onur |