Publication:
Similarity score fusion by ranking risk minimization for 3D object retrieval

dc.contributor.coauthorAkgül C.B.
dc.contributor.coauthorSankur B.
dc.contributor.coauthorSchmitt F.
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T22:52:20Z
dc.date.issued2008
dc.description.abstractIn this work, we introduce a score fusion scheme to improve the 3D object retrieval performance. The state of the art in 3D object retrieval shows that no single descriptor is capable of providing fine grain discrimination required by prospective 3D search engines. The proposed fusion algorithm linearly combines similarity information originating from multiple shape descriptors and learns their optimal combination of weights by minimizing the empirical ranking risk criterion. The algorithm is based on the statistical ranking framework [CLV07], for which consistency and fast rate of convergence of empirical ranking risk minimizers have been established. We report the results of ontology-driven and relevance feedback searches on a large 3D object database, the Princeton Shape Benchmark. Experiments show that, under query formulations with user intervention, the proposed score fusion scheme boosts the performance of the 3D retrieval machine significantly.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipEUROGRAPHICS Association
dc.identifier.isbn9783-9056-7405-7
dc.identifier.issn1997-0463
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84883122712andpartnerID=40andmd5=8e110c96696d2293889bf178e3ef09c4
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84883122712
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6999
dc.keywords3D object retrieval
dc.keywordsFusion algorithms
dc.keywordsOptimal combination
dc.keywordsQuery formulation
dc.keywordsRelevance feedback
dc.keywordsSimilarity informations
dc.keywordsSimilarity scores
dc.keywordsStatistical ranking
dc.keywordsAlgorithms
dc.keywordsQuery processing
dc.keywordsSearch engines
dc.keywordsThree dimensional
dc.language.isoeng
dc.publisherThe Eurographics Association
dc.relation.ispartofEurographics Workshop on 3D Object Retrieval, EG 3DOR
dc.subjectComputer engineering
dc.titleSimilarity score fusion by ranking risk minimization for 3D object retrieval
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorYemez, Yücel
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files