Publication: Deep learning for brain decoding
Program
KU-Authors
KU Authors
Co-Authors
Firat, Orhan
Vural, Fatos T. Yarman
Advisor
Publication Date
2014
Language
English
Type
Conference proceeding
Journal Title
Journal ISSN
Volume Title
Abstract
Learning low dimensional embedding spaces (manifolds) for efficient feature representation is crucial for complex and high dimensional input spaces. Functional magnetic resonance imaging (fMRI) produces high dimensional input data and with a less then ideal number of labeled samples for a classification task. In this study, we explore deep learning methods for fMRI classification tasks in order to reduce dimensions of feature space, along with improving classification performance for brain decoding. We employ sparse autoencoders for unsupervised feature learning, leveraging unlabeled fMRI data to learn efficient, non-linear representations as the building blocks of a deep learning architecture by stacking them. Proposed method is tested on a memory encoding/retrieval experiment with ten classes. The results support the efficiency compared to the baseline multi-voxel pattern analysis techniques.
Description
Source:
2014 IEEE International Conference on Image Processing, ICIP 2014
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Keywords:
Subject
Computer science, Engineering, Electrical and electronic engineering, Imaging science, Photographic technology