Publication: Deep learning for brain decoding
dc.contributor.coauthor | Firat, Orhan | |
dc.contributor.coauthor | Vural, Fatos T. Yarman | |
dc.contributor.department | Department of Psychology | |
dc.contributor.department | Department of Psychology | |
dc.contributor.kuauthor | Öztekin, İlke | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | College of Social Sciences and Humanities | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:47:15Z | |
dc.date.issued | 2014 | |
dc.description.abstract | Learning low dimensional embedding spaces (manifolds) for efficient feature representation is crucial for complex and high dimensional input spaces. Functional magnetic resonance imaging (fMRI) produces high dimensional input data and with a less then ideal number of labeled samples for a classification task. In this study, we explore deep learning methods for fMRI classification tasks in order to reduce dimensions of feature space, along with improving classification performance for brain decoding. We employ sparse autoencoders for unsupervised feature learning, leveraging unlabeled fMRI data to learn efficient, non-linear representations as the building blocks of a deep learning architecture by stacking them. Proposed method is tested on a memory encoding/retrieval experiment with ten classes. The results support the efficiency compared to the baseline multi-voxel pattern analysis techniques. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.identifier.doi | 10.1109/ICIP.2014.7025563 | |
dc.identifier.isbn | 9781-4799-5751-4 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949927518&doi=10.1109%2fICIP.2014.7025563&partnerID=40&md5=daed7c441140362ea374620a3b701cdc | |
dc.identifier.scopus | 2-s2.0-84949927518 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ICIP.2014.7025563 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/14085 | |
dc.identifier.wos | 370063602197 | |
dc.keywords | Brain state decoding | |
dc.keywords | Deep learning | |
dc.keywords | fMRI | |
dc.keywords | MVPA | |
dc.keywords | Stacked autoencoders | |
dc.language | English | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.source | 2014 IEEE International Conference on Image Processing, ICIP 2014 | |
dc.subject | Computer science | |
dc.subject | Engineering | |
dc.subject | Electrical and electronic engineering | |
dc.subject | Imaging science | |
dc.subject | Photographic technology | |
dc.title | Deep learning for brain decoding | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Öztekin, İlke | |
relation.isOrgUnitOfPublication | d5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c | |
relation.isOrgUnitOfPublication.latestForDiscovery | d5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c |