Publication:
Deep learning for brain decoding

dc.contributor.coauthorFirat, Orhan
dc.contributor.coauthorVural, Fatos T. Yarman
dc.contributor.departmentDepartment of Psychology
dc.contributor.departmentDepartment of Psychology
dc.contributor.kuauthorÖztekin, İlke
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:47:15Z
dc.date.issued2014
dc.description.abstractLearning low dimensional embedding spaces (manifolds) for efficient feature representation is crucial for complex and high dimensional input spaces. Functional magnetic resonance imaging (fMRI) produces high dimensional input data and with a less then ideal number of labeled samples for a classification task. In this study, we explore deep learning methods for fMRI classification tasks in order to reduce dimensions of feature space, along with improving classification performance for brain decoding. We employ sparse autoencoders for unsupervised feature learning, leveraging unlabeled fMRI data to learn efficient, non-linear representations as the building blocks of a deep learning architecture by stacking them. Proposed method is tested on a memory encoding/retrieval experiment with ten classes. The results support the efficiency compared to the baseline multi-voxel pattern analysis techniques.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/ICIP.2014.7025563
dc.identifier.isbn9781-4799-5751-4
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84949927518&doi=10.1109%2fICIP.2014.7025563&partnerID=40&md5=daed7c441140362ea374620a3b701cdc
dc.identifier.scopus2-s2.0-84949927518
dc.identifier.urihttp://dx.doi.org/10.1109/ICIP.2014.7025563
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14085
dc.identifier.wos370063602197
dc.keywordsBrain state decoding
dc.keywordsDeep learning
dc.keywordsfMRI
dc.keywordsMVPA
dc.keywordsStacked autoencoders
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source2014 IEEE International Conference on Image Processing, ICIP 2014
dc.subjectComputer science
dc.subjectEngineering
dc.subjectElectrical and electronic engineering
dc.subjectImaging science
dc.subjectPhotographic technology
dc.titleDeep learning for brain decoding
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.kuauthorÖztekin, İlke
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublication.latestForDiscoveryd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c

Files