Publication:
Boosting formic acid dehydrogenation via the design of a Z-scheme heterojunction photocatalyst: The case of graphitic carbon nitride/Ag/Ag3PO4-AgPd quaternary nanocomposites

dc.contributor.coauthorAltan, Orhan
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorMetin, Önder
dc.contributor.kuprofileFaculty Member
dc.contributor.researchcenterKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.researchcenterKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.researchcenterKUYTAM (Koç University Surface Science and Technology Center)
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid46962
dc.date.accessioned2024-11-09T23:23:31Z
dc.date.issued2021
dc.description.abstractThe development of an efficient, eco-friendly, practical, and selective way to decompose formic acid (FA) into H-2 and CO2 is crucial for the utilization of FA as a chemical hydrogen storage material in hydrogen economy. In this regard, photocatalytic FA dehydrogenation attracts great attention owing to its potential to meet the above-mentioned requirements. Interestingly, there is no example of heterojunction photocatalyst that tunes the hole potential of the semiconductor, resulted in a better photocatalytic activity. We report herein for the first time the design and fabrication of a novel Z-scheme heterojunction photocatalyst for FA dehydrogenation, denoted as g-CN/Ag/Ag3PO4-AgPd comprising graphitic carbon nitride (g-CN) and Ag3PO4 semiconductors, Ag and AgPd alloy nanoparticles (NPs). The designed g-CN/Ag/Ag3PO4-AgPd photocatalysts boosted the FA dehydrogenation by creating more positive hole potential and improving the charge separation efficiency of the two distinct semiconductors. The g-CN/Ag/Ag3PO4-AgPd photocatalysts provided a very high turnover frequency (TOF) of 2107 h(-1) in the FA dehydrogenation under white-LED illumination at 50 degrees C. This TOF is 3.2 times and 44 times greater than those of g-CN/AgPd and g-CN/Pd binary non-Z-scheme heterojunction catalysts, respectively, under the same conditions and comparable to the best photocatalysts and heterogeneous catalysts reported in the FA dehydrogenation so far.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTurkish Academy of Sciences (TUBA) O. Metin thanks to Turkish Academy of Sciences (TUBA) for the financial support.
dc.description.volume535
dc.identifier.doi10.1016/j.apsusc.2020.147740
dc.identifier.eissn1873-5584
dc.identifier.issn0169-4332
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85090417632
dc.identifier.urihttp://dx.doi.org/10.1016/j.apsusc.2020.147740
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11259
dc.identifier.wos582373900072
dc.keywordsGraphitic carbon nitride
dc.keywordsNanoparticles
dc.keywordsPhotocatalyst
dc.keywordsZ-scheme heterojunction
dc.keywordsFormic acid dehydrogenation
dc.keywordsHydrogen storage
dc.languageEnglish
dc.publisherElsevier
dc.sourceApplied Surface Science
dc.subjectChemistry, physical
dc.subjectMaterials science, coatings and films
dc.subjectPhysics, applied
dc.subjectPhysics, condensed matter
dc.titleBoosting formic acid dehydrogenation via the design of a Z-scheme heterojunction photocatalyst: The case of graphitic carbon nitride/Ag/Ag3PO4-AgPd quaternary nanocomposites
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1622-4992
local.contributor.kuauthorMetin, Önder
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files