Publication: Boosting formic acid dehydrogenation via the design of a Z-scheme heterojunction photocatalyst: The case of graphitic carbon nitride/Ag/Ag3PO4-AgPd quaternary nanocomposites
Program
KU-Authors
KU Authors
Co-Authors
Altan, Orhan
Publication Date
Language
Embargo Status
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
The development of an efficient, eco-friendly, practical, and selective way to decompose formic acid (FA) into H-2 and CO2 is crucial for the utilization of FA as a chemical hydrogen storage material in hydrogen economy. In this regard, photocatalytic FA dehydrogenation attracts great attention owing to its potential to meet the above-mentioned requirements. Interestingly, there is no example of heterojunction photocatalyst that tunes the hole potential of the semiconductor, resulted in a better photocatalytic activity. We report herein for the first time the design and fabrication of a novel Z-scheme heterojunction photocatalyst for FA dehydrogenation, denoted as g-CN/Ag/Ag3PO4-AgPd comprising graphitic carbon nitride (g-CN) and Ag3PO4 semiconductors, Ag and AgPd alloy nanoparticles (NPs). The designed g-CN/Ag/Ag3PO4-AgPd photocatalysts boosted the FA dehydrogenation by creating more positive hole potential and improving the charge separation efficiency of the two distinct semiconductors. The g-CN/Ag/Ag3PO4-AgPd photocatalysts provided a very high turnover frequency (TOF) of 2107 h(-1) in the FA dehydrogenation under white-LED illumination at 50 degrees C. This TOF is 3.2 times and 44 times greater than those of g-CN/AgPd and g-CN/Pd binary non-Z-scheme heterojunction catalysts, respectively, under the same conditions and comparable to the best photocatalysts and heterogeneous catalysts reported in the FA dehydrogenation so far.
Source
Publisher
Elsevier
Subject
Chemistry, physical, Materials science, coatings and films, Physics, applied, Physics, condensed matter
Citation
Has Part
Source
Applied Surface Science
Book Series Title
Edition
DOI
10.1016/j.apsusc.2020.147740