Publication:
Machine learning for glass modeling

dc.contributor.coauthorTandia, Adama
dc.contributor.coauthorMauro, John C.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorOnbaşlı, Mehmet Cengiz
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid258783
dc.date.accessioned2024-11-09T22:58:33Z
dc.date.issued2019
dc.description.abstractWith abundant composition-dependent glass properties data of good quality, machine learning-based models can enable the development of glass compositions with desired properties such as liquidus temperature, viscosity, and Young's modulus using much fewer experiments than would otherwise be needed in a purely experimental exploratory research. In particular, research companies with long track records of exploratory research are in the unique position to capitalize on data-driven models by compiling their earlier internal experiments for research and product development. In this chapter, we demonstrate how Corning has used this unique advantage to develop models based on neural networks and genetic algorithms to predict compositions that will yield a desired liquidus temperature as well as viscosity, Young's modulus, compressive stress, and depth of layer.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume2019
dc.identifier.doi10.1007/978-3-319-93728-1_33
dc.identifier.issn2522-8692
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075934771&doi=10.1007%2f978-3-319-93728-1_33&partnerID=40&md5=d4bafccd2fe392b1db13c71d228d8a9a
dc.identifier.scopus2-s2.0-85075934771
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-319-93728-1_33
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7742
dc.keywordsN/A
dc.languageEnglish
dc.publisherSpringer
dc.sourceSpringer Handbooks
dc.subjectMaterials Science
dc.titleMachine learning for glass modeling
dc.typeBook Chapter
dspace.entity.typePublication
local.contributor.authorid0000-0002-3554-7810
local.contributor.kuauthorOnbaşlı, Mehmet Cengiz
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files