Publication: Machine learning for glass modeling
dc.contributor.coauthor | Tandia, Adama | |
dc.contributor.coauthor | Mauro, John C. | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.kuauthor | Onbaşlı, Mehmet Cengiz | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | 258783 | |
dc.date.accessioned | 2024-11-09T22:58:33Z | |
dc.date.issued | 2019 | |
dc.description.abstract | With abundant composition-dependent glass properties data of good quality, machine learning-based models can enable the development of glass compositions with desired properties such as liquidus temperature, viscosity, and Young's modulus using much fewer experiments than would otherwise be needed in a purely experimental exploratory research. In particular, research companies with long track records of exploratory research are in the unique position to capitalize on data-driven models by compiling their earlier internal experiments for research and product development. In this chapter, we demonstrate how Corning has used this unique advantage to develop models based on neural networks and genetic algorithms to predict compositions that will yield a desired liquidus temperature as well as viscosity, Young's modulus, compressive stress, and depth of layer. | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.volume | 2019 | |
dc.identifier.doi | 10.1007/978-3-319-93728-1_33 | |
dc.identifier.issn | 2522-8692 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075934771&doi=10.1007%2f978-3-319-93728-1_33&partnerID=40&md5=d4bafccd2fe392b1db13c71d228d8a9a | |
dc.identifier.scopus | 2-s2.0-85075934771 | |
dc.identifier.uri | https://dx.doi.org/10.1007/978-3-319-93728-1_33 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/7742 | |
dc.keywords | N/A | |
dc.language | English | |
dc.publisher | Springer | |
dc.source | Springer Handbooks | |
dc.subject | Materials Science | |
dc.title | Machine learning for glass modeling | |
dc.type | Book Chapter | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-3554-7810 | |
local.contributor.kuauthor | Onbaşlı, Mehmet Cengiz | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 |