Publication:
Blue TiO2 nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

Advisor

Publication Date

2020

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 degrees C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of -1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm(-2)) compared to the undoped TiO(2 )nanotube arrays (0.19 mA cm(-2)). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.

Description

Source:

Turkish Journal of Chemistry

Publisher:

TÜBİTAK

Keywords:

Subject

Chemistry, Engineering

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

1

Downloads

View PlumX Details