Publication:
Relatively weak closed ideals of A(G), sets of synthesis and sets of uniqueness

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜlger, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-10T00:02:43Z
dc.date.issued2014
dc.description.abstractLet G be a locally compact amenable group, and A(G) and B(G) the Fourier and Fourier-Stieltjes algebras of G. For a closed subset E of G, let J(E) and k(E) be the smallest and largest closed ideals of A(G) with hull E, respectively. We study sets E for which the ideals J(E) or/and k(E) are sigma(A(G),C*(G))-closed in A(G). Moreover, we present, in terms of the uniform topology of C-0(G) and the weak* topology of B(G), a series of characterizations of sets obeying synthesis. Finally, closely related to the above issues, we present a series of results about closed sets of uniqueness (i.e. closed sets E for which <(J(E))over bar>w* = B(G)).
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume136
dc.identifier.doi10.4064/cm136-2-9
dc.identifier.eissn1730-6302
dc.identifier.issn0010-1354
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-84907096994
dc.identifier.urihttps://doi.org/10.4064/cm136-2-9
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16173
dc.identifier.wos341636600009
dc.keywordsFourier algebra
dc.keywordsFouriers Stieltjes algebra
dc.keywordsSets of synthesis
dc.keywordsSets of uniqueness
dc.language.isoeng
dc.publisherArs Polona-Ruch
dc.relation.ispartofColloquium Mathematicum
dc.subjectMathematics
dc.titleRelatively weak closed ideals of A(G), sets of synthesis and sets of uniqueness
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÜlger, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
person.familyNameÜlger
person.givenNameAli
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files