Publication:
Relatively weak closed ideals of A(G), sets of synthesis and sets of uniqueness

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜlger, Ali
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:02:43Z
dc.date.issued2014
dc.description.abstractLet G be a locally compact amenable group, and A(G) and B(G) the Fourier and Fourier-Stieltjes algebras of G. For a closed subset E of G, let J(E) and k(E) be the smallest and largest closed ideals of A(G) with hull E, respectively. We study sets E for which the ideals J(E) or/and k(E) are sigma(A(G),C*(G))-closed in A(G). Moreover, we present, in terms of the uniform topology of C-0(G) and the weak* topology of B(G), a series of characterizations of sets obeying synthesis. Finally, closely related to the above issues, we present a series of results about closed sets of uniqueness (i.e. closed sets E for which <(J(E))over bar>w* = B(G)).
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume136
dc.identifier.doi10.4064/cm136-2-9
dc.identifier.eissn1730-6302
dc.identifier.issn0010-1354
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-84907096994
dc.identifier.urihttp://dx.doi.org/10.4064/cm136-2-9
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16173
dc.identifier.wos341636600009
dc.keywordsFourier algebra
dc.keywordsFouriers Stieltjes algebra
dc.keywordsSets of synthesis
dc.keywordsSets of uniqueness
dc.languageEnglish
dc.publisherArs Polona-Ruch
dc.sourceColloquium Mathematicum
dc.subjectMathematics
dc.titleRelatively weak closed ideals of A(G), sets of synthesis and sets of uniqueness
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-3377-8666
local.contributor.kuauthorÜlger, Ali
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files