Publication:
A photonic Carnot engine powered by a spin-star network

dc.contributor.coauthorTürkpençe, Deniz
dc.contributor.coauthorPaternostro, Mauro
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorAltıntaş, Ferdi
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.contributor.yokid1674
dc.date.accessioned2024-11-09T13:09:37Z
dc.date.issued2017
dc.description.abstractWe propose a spin-star network, where a central spin-(1/2), acting as a quantum fuel, is coupled to N outer spin-(1/2) particles. If the network is in thermal equilibrium with a heat bath, the central spin can have an effective temperature, higher than that of the bath, scaling nonlinearly with N. Such temperature can be tuned with the anisotropy parameter of the coupling. Using a beam of such central spins to pump a micromaser cavity, we determine the dynamics of the cavity field using a coarse-grained master equation. We find that the central-spin beam effectively acts as a hot reservoir to the cavity field and brings it to a thermal steady state whose temperature benefits from the same nonlinear enhancement with N and results in a highly efficient photonic Carnot engine. The validity of our conclusions is tested against the presence of atomic and cavity damping using a microscopic master equation method for typical microwave cavity-QED parameters. The role played by quantum coherence and correlations on the scaling effect is pointed out. An alternative scheme where the spin-(1/2) is coupled to a macroscopic spin-(N/2) particle is also discussed. Copyright (C) EPLA, 2017
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union FP7 grant TherMiQ
dc.description.sponsorshipJ. Schwinger Foundation
dc.description.sponsorshipUniversity Research Agreement between Koç University and Lockheed Martin Corporation and the Royal Society-Newton Mobility Grant
dc.description.versionPublisher version
dc.description.volume117
dc.formatpdf
dc.identifier.doi10.1209/0295-5075/117/50002
dc.identifier.eissn1286-4854
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01463
dc.identifier.issn0295-5075
dc.identifier.linkhttps://doi.org/10.1209/0295-5075/117/50002
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85019416370
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2767
dc.identifier.wos401167400002
dc.keywordsDamping bases
dc.keywordsFinite-time
dc.keywordsQuantum
dc.keywordsMaser
dc.keywordsEntanglement
dc.keywordsDynamics
dc.keywordsQubits
dc.keywordsModel
dc.keywordsBath
dc.languageEnglish
dc.publisherEuropean Physical Society (EPS)
dc.relation.grantnoGrant Agreement 618074
dc.relation.grantnoJSF-14-7-0000
dc.relation.grantnoNI160057
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/4559
dc.sourceEPL (Europhysics Letters)
dc.subjectPhysics
dc.titleA photonic Carnot engine powered by a spin-star network
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-9134-3951
local.contributor.kuauthorAltıntaş, Ferdi
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
4559.pdf
Size:
864.06 KB
Format:
Adobe Portable Document Format