Publication:
Towards opcode-based smart contract reentrancy vulnerability detection using explainable deep learning

dc.conference.dateOct 22-23, 2025
dc.conference.locationAnkara
dc.contributor.coauthorSiyal, Fiza
dc.contributor.coauthorGuzzo, Antonella
dc.contributor.coauthorTahir, Muhammad Usman
dc.contributor.coauthorAlıcı, Uzay Işın
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.kuauthorÖrsdemir, Alperen
dc.contributor.kuauthorKüpçü, Alptekin
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2026-01-16T08:47:18Z
dc.date.available2026-01-16
dc.date.issued2025
dc.description.abstractThe rapid growth in blockchain technology adoption has highlighted the significance of security in Ethereum smart contracts. Due to its immutable nature, post-deployment rectification is not possible, and vulnerabilities such as reentrancy have led to substantial financial losses in recent years, making it a pressing research priority for its timely detection. Along with static and dynamic analysis tools, recent studies have shown promising results using Deep Learning (DL) and Machine Learning (ML) techniques for vulnerability detection using imagebased methods. Although these methods often suffer from high false positive rates and limited interpretability. To address these issues, we proposed an interpretable One-dimensional Convolutional Neural Network (1D CNN), a lightweight DL framework with integrated Gradients, an attribution for the Explainable AI (XAI) framework. This framework processes smart contract opcode in a series of sequences rendered as RGB-encoded strips, enabling effective feature extraction while preserving the contract semantics and execution order. Trained on a publicly available labeled comprehensive dataset named Messi-Q, which has already been used in prominent studies in the field. Approach achieves over 97% classification accuracy in detecting reentrancy vulnerability. More importantly, it provides fine-grained, opcode-level attributions offering a scalable and interpretable path forward for smart contract analysis. © 2025 IEEE.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipWe acknowledge TUB¨ ˙ITAK (the Scientific and Technological Research Council of Turkiye) for supporting this research ¨ through projects 123E462 and 124N941.
dc.identifier.doi10.1109/ISCTrkiye68593.2025.11224816
dc.identifier.embargoNo
dc.identifier.grantno123E462
dc.identifier.grantno124N941
dc.identifier.isbn9798331557096
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105025203419
dc.identifier.urihttps://doi.org/10.1109/ISCTrkiye68593.2025.11224816
dc.identifier.urihttps://hdl.handle.net/20.500.14288/32143
dc.keywordsBlockchain
dc.keywordsDeep learning (DL)
dc.keywordsExplainable AI (XAI)
dc.keywordsReentrancy
dc.keywordsSmart contract
dc.keywordsVulnerability detection
dc.language.isoeng
dc.publisherIEEE
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartof2025 18th International Conference on Information Security and Cryptology Iscturkiye 2025 Proceedings
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectEngineering
dc.titleTowards opcode-based smart contract reentrancy vulnerability detection using explainable deep learning
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameÖrsdemir
person.familyNameKüpçü
person.givenNameAlperen
person.givenNameAlptekin
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files