Publication:
Heat-mitigated design and Lorentz force-based steering of an MRI-driven microcatheter toward minimally invasive surgery

dc.contributor.coauthorPhelan, Martin Francis
dc.contributor.coauthorLazovic, Jelena
dc.contributor.coauthorGilbert, Hunter
dc.contributor.coauthorTiryaki, Mehmet Efe
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T11:42:36Z
dc.date.issued2022
dc.description.abstractCatheters integrated with microcoils for electromagnetic steering under the high, uniform magnetic field within magnetic resonance (MR) scanners (3-7 Tesla) have enabled an alternative approach for active catheter operations. Achieving larger ranges of tip motion for Lorentz force-based steering have previously been dependent on using high power coupled with active cooling, bulkier catheter designs, or introducing additional microcoil sets along the catheter. This work proposes an alternative approach using a heat-mitigated design and actuation strategy for a magnetic resonance imaging (MRI)-driven microcatheter. A quad-configuration microcoil (QCM) design is introduced, allowing miniaturization of existing MRI-driven, Lorentz force-based catheters down to 1-mm diameters with minimal power consumption (0.44 W). Heating concerns are experimentally validated using noninvasive MRI thermometry. The Cosserat model is implemented within an MR scanner and results demonstrate a desired tip range up to 110 degrees with 4 degrees error. The QCM is used to validate the proposed model and power-optimized steering algorithm using an MRI-compatible neurovascular phantom and ex vivo kidney tissue. The power-optimized tip orientation controller conserves as much as 25% power regardless of the catheter's initial orientation. These results demonstrate the implementation of an MRI-driven, electromagnetic catheter steering platform for minimally invasive surgical applications without the need for camera feedback or manual advancement via guidewires. The incorporation of such system in clinics using the proposed design and actuation strategy can further improve the safety and reliability of future MRI-driven active catheter operations.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue10
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume9
dc.formatpdf
dc.identifier.doi10.1002/advs.202105352
dc.identifier.eissn2198-3844
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03529
dc.identifier.issn2198-3844
dc.identifier.linkhttps://doi.org/10.1002/advs.202105352
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85124071071
dc.identifier.urihttps://hdl.handle.net/20.500.14288/224
dc.identifier.wos750420800001
dc.keywordsActive catheters
dc.keywordsLorentz force
dc.keywordsMagnetic resonance imaging
dc.keywordsMedical robotics
dc.languageEnglish
dc.publisherWiley
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10324
dc.sourceAdvanced Science
dc.subjectMultidisciplinary chemistry
dc.subjectNanoscience and nanotechnology
dc.subjectMultidisciplinary materials science
dc.titleHeat-mitigated design and Lorentz force-based steering of an MRI-driven microcatheter toward minimally invasive surgery
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10324.pdf
Size:
4.89 MB
Format:
Adobe Portable Document Format