Publication:
A Bayesian perspective for determinant minimization based robust structured matrix factorization

dc.contributor.coauthorTatli, Gokcan
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-01-19T10:30:39Z
dc.date.issued2023
dc.description.abstractWe introduce a Bayesian perspective for the structured matrix factorization problem. The proposed framework provides a probabilistic interpretation for existing geometric methods based on determinant minimization. We model input data vectors as linear transformations of latent vectors drawn from a distribution uniform over a particular domain reflecting structural assumptions, such as the probability simplex in Nonnegative Matrix Factorization and polytopes in Polytopic Matrix Factorization. We represent the rows of the linear transformation matrix as vectors generated independently from a normal distribution whose covariance matrix is inverse Wishart distributed. We show that the corresponding maximum a posteriori estimation problem boils down to the robust determinant minimization approach for structured matrix factorization, providing insights about parameter selections and potential algorithmic extensions.
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/ICASSP49357.2023.10094991
dc.identifier.isbn978-172816327-7
dc.identifier.issn15206149
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85177585749
dc.identifier.urihttps://doi.org/10.1109/ICASSP49357.2023.10094991
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26079
dc.keywordsBayesian matrix factorization
dc.keywordsDeterminant minimization
dc.keywordsNonnegative matrix factorization
dc.keywordsPolytopic matrix factorization
dc.keywordsStructured matrix factorization
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartofICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dc.subjectEngineering
dc.titleA Bayesian perspective for determinant minimization based robust structured matrix factorization
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorErdoğan, Alper Tunga
local.publication.orgunit1College of Engineering
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2KUIS AI (Koç University & İş Bank Artificial Intelligence Center)
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files