Publication:
Uniform syndeticity in multiple recurrence

Thumbnail Image

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Pan, Minghao

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers d, l >= 1 and any epsilon > 0, we prove the existence of delta > 0 and K >= 1 (dependent only on d, l, and epsilon) such that the following holds: Consider a solvable group Gamma of derived length l, a probability space (X, mu), and d pairwise commuting measure-preserving Gamma-actions T-1, & mldr;, T-d on (X, mu). Let E be a measurable set in X with mu(E) >= epsilon. Then, K many (left) translates of {gamma is an element of Gamma: mu (T-1(gamma-1 )(E)boolean AND T-2(gamma-1)degrees T-1(gamma-1 )(E) boolean AND center dot center dot center dot boolean AND T-d(gamma-1 )degrees T-d-1(gamma-1 )degrees center dot center dot center dot degrees T-1(gamma-1 )(E)) >= delta} cover Gamma. This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers d, l >= 1 and any epsilon>0, there are delta>0 and K >= 1 (dependent only on d, l, and epsilon) such that for all finite solvable groups G of derived length l and any subset E subset of G(d) with m(circle times d)(E) >= epsilon (where m is the uniform measure on G), we have that K-many (left) translates of {g is an element of G:m(circle times d)({(a(1), & mldr;, a(n)) is an element of G(d): (a(1), & mldr;, a(n)), (ga(1), a(2), & mldr;, a(n)), & mldr;, (ga(1), ga(2), & mldr;, ga(n)) is an element of E}) >= delta} cover G. The proof of our main result is a consequence of an ultralimit version of Austin's amenable ergodic Szemeredi theorem.

Source

Publisher

CAMBRIDGE UNIV PRESS

Subject

Mathematics applied, Mathematics

Citation

Has Part

Source

Ergodic Theory and Dynamical Systems

Book Series Title

Edition

DOI

10.1017/etds.2024.40

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

8

Views

2

Downloads

View PlumX Details