Publication: Modeling and analysis of SiNW FET-based molecular communication receiver
Files
Program
KU-Authors
KU Authors
Co-Authors
Publication Date
Language
Type
Embargo Status
NO
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
Molecular communication (MC) is a bio-inspired communication method based on the exchange of molecules for information transfer among nanoscale devices. MC has been extensively studied from various aspects in the literature; however, the physical design of MC transceiving units is largely neglected with the assumption that network nodes are entirely biological devices, e.g., engineered bacteria, which are intrinsically capable of receiving and transmitting molecular messages. However, the low information processing capacity of biological devices and the challenge to interface them with macroscale networks hinder the true application potential of nanonetworks. To overcome this limitation, recently, we proposed a nanobioelectronic MC receiver architecture exploiting the nanoscale field-effect transistor-based biosensor (bioFET) technology, which provides noninvasive and sensitive molecular detection while producing electrical signals as the output. In this paper, we introduce a comprehensive model for silicon nanowire FET-based MC receivers by integrating the underlying processes in MC and bioFET to provide a unified analysis framework. We derive closed-form expressions for the noise statistics, the signal-to-noise ratio (SNR) at the receiver output, and the symbol error probability (SEP). Performance evaluation in terms of SNR and SEP reveals the effects of individual system parameters on the detection performance of the proposed MC receiver.
Source
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Engineering, Science and technology
Citation
Has Part
Source
IEEE Transactions on Communications
Book Series Title
Edition
DOI
10.1109/TCOMM.2016.2589935