Publication: Synergistic Silver Doping and Halide Passivation for Enhanced Stability and Emission Efficiency in CsPbI3 Quantum Dots
Program
KU Authors
Co-Authors
Simon, Paul
Publication Date
Language
Type
Embargo Status
No
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
The intrinsic instability of CsPbI3 quantum dots (QDs) presents a major challenge for their practical deployment in optoelectronic devices. Here, we demonstrate the combined effects of Ag+ doping and halide (Cl-/I-) passivation to enhance the structural and optical stability of CsPbI3 QDs. Partial substitution of Pb2+ by Ag+ leads to lattice contraction and defect suppression, while Cl- acts as a surface-localized passivating agent. Structural analyses (X-ray diffraction, high-resolution transmission electron microscopy, and high-resolution scanning transmission electron microscopy) confirm successful Ag+ incorporation without secondary phase formation, and X-ray photoelectron spectroscopy depth profiling reveals surface enrichment of Cl-. Mixed doping with AgCl and AgI precursors effectively stabilizes the cubic perovskite phase, increasing the photoluminescence quantum yield (PLQY) from similar to 85 to 96.6% and reducing nonradiative recombination, as supported by time-resolved photoluminescence measurements. The optimized CsPb1-x Ag x I3 (x = 0.025 AgCl + 0.025 AgI) exhibits outstanding photostability, retaining similar to 41% of its initial PLQY after 70 days of continuous ultraviolet exposure. When integrated into red-emitting light-emitting diode devices, these QDs deliver external quantum efficiencies up to 36.8%, with stable and saturated emission. These results establish Ag+/halide codoping as a powerful strategy to advance CsPbI3 QDs toward robust and high-performance optoelectronic applications.
Source
Publisher
American Chemical Society
Subject
Science, Materials science, Technology
Citation
Has Part
Source
ACS Applied Nano Materials
Book Series Title
Edition
DOI
10.1021/acsanm.5c03682
item.page.datauri
Link
Rights
CC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
Copyrights Note
Creative Commons license
Except where otherwised noted, this item's license is described as CC BY-NC-ND (Attribution-NonCommercial-NoDerivs)

