Publication:
A robust normalization method for fMRI data for brain decoding

dc.contributor.coauthorSucu, Gunes
dc.contributor.coauthorAkbas, Emre
dc.contributor.coauthorVural, Fatos Yarman
dc.contributor.departmentDepartment of Psychology
dc.contributor.departmentN/A
dc.contributor.kuauthorÖztekin, İlke
dc.contributor.kuauthorMızrak, Eda
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Psychology
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteGraduate School of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:07:34Z
dc.date.issued2016
dc.description.abstractFunctional Magnetic Resonance Imaging (fMRI) methods produce high dimensional representation of cognitive processes under heavy noise due to the limitations of hardware and measurement techniques. In order to reduce the noise and extract useful information from the fMRI data, a sequence of pre-processing techniques, such as smoothing with spatial filters and z-scoring, are used. In this study, we suggest an additional normalization technique based upon a statistical property of fMRI data. We, first, define a random variable V(t) as the average voxel intensity value of a brain volume measured at a time instant t. Then, we measure the Pearson correlation between V(t) and 1/V(t) for all time instances. We observe that the Pearson correlation values are very close to -1, indicating that V(t) and 1/V(t) have a strong negative correlation. We show that one explanation for this property is V(t) being almost surely constant and the small fluctuations on V(t) caused by noise. The proposed method removes these fluctuations on the data resulting in almost surely constant brain volumes V(t) for all values of t. The effectiveness of the proposed normalization method is tested with well-known brain decoding algorithms and voxel selection methods. It is observed that the suggested normalization method improves the performance 1-2 percent on the average. The method also improves the signal to noise ratio.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2016.7496228
dc.identifier.isbn9781-5090-1679-2
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84982793248&doi=10.1109%2fSIU.2016.7496228&partnerID=40&md5=a05d482856bab60e41ad5b3a63d14b98
dc.identifier.scopus2-s2.0-84982793248
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2016.7496228
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9168
dc.identifier.wos391250900544
dc.keywordsCorrelation methods
dc.keywordsDecoding
dc.keywordsMagnetic resonance imaging
dc.keywordsSignal to noise ratio
dc.keywordsFunctional magnetic resonance imaging
dc.keywordsMeasurement techniques
dc.keywordsNegative correlation
dc.keywordsNormalization methods
dc.keywordsPearson correlation
dc.keywordsRobust normalization
dc.keywordsSmall fluctuation
dc.keywordsStatistical properties
dc.keywordsSignal processing
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings
dc.subjectEngineering
dc.subjectElectrical and electronic engineering
dc.titleA robust normalization method for fMRI data for brain decoding
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-1765-7047
local.contributor.kuauthorÖztekin, İlke
local.contributor.kuauthorMızrak, Eda
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublication.latestForDiscoveryd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c

Files