Publication:
Magnetically Controllable and Degradable Milliscale Swimmers as Intraocular Drug Implants

dc.contributor.coauthorYildiz, Erdost
dc.contributor.coauthorBozuyuk, Ugur
dc.contributor.coauthorYildiz, Eray
dc.contributor.coauthorWang, Fan
dc.contributor.coauthorHan, Mertcan
dc.contributor.coauthorKaracakol, Alp Can
dc.contributor.coauthorSheehan, Devin
dc.contributor.coauthorYu, Yan
dc.contributor.coauthorSitti, Metin
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.departmentSchool of Medicine
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorPhD Student, Yıldız, Erdost
dc.contributor.kuauthorFaculty Member, Sitti, Metin
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-09-10T04:57:58Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractIntraocular drug implants are increasingly used for retinal treatments, such as age-related macular degeneration and diabetic macular edema, due to the rapidly aging global population. Although these therapies show promise in arresting disease progression and improving vision, intraocular implant-based therapies can cause unexpected complications that require further surgery due to implant dislocation or uncontrolled drug release. These frequent complications of intraocular drug implants can be overcome using magnetically controllable degradable milliscale swimmers (MDMS) with a double-helix body morphology. A biodegradable hydrogel, polyethylene glycol diacrylate, is employed as the primary 3D printing material of MDMS, and it is magnetized by decorating it with biocompatible polydopamine-encapsulated iron-platinum nanoparticles. MDMS have comparable dimensions to commercial intraocular implants that achieve translational motions in both aqueous and vitreous bodies. They can be imaged in real-time using optical coherence tomography, ultrasound, and photoacoustic imaging. Thanks to their biodegradable hydrogel-based structure, they can be loaded with anti-inflammatory drug molecules and release the medications without disrupting retinal epithelial viability and barrier function, and decrease proinflammatory cytokine release significantly. These magnetically controllable swimmers, which degrade in a couple of months, can be used for less invasive and more precise intraocular drug delivery compared to commercial intraocular drug implants.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyPubMed
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipMax Planck Society; European Union [101059593]; MAXMINDS program under the MPG Diversity Excellence funding scheme; European Research Council (ERC) Advanced Grant SoMMoR [834531]
dc.description.versionPublished Version
dc.identifier.doi10.1002/advs.202507569
dc.identifier.eissn2198-3844
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06475
dc.identifier.pubmed40525639
dc.identifier.quartileN/A
dc.identifier.urihttps://doi.org/10.1002/advs.202507569
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30302
dc.identifier.wos001509958400001
dc.keywordsbiodegradation
dc.keywordshydrogel
dc.keywordsintraocular drug implants
dc.keywordsmicrorobotics
dc.keywordsretinal diseases
dc.language.isoeng
dc.publisherWiley
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofAdvanced science
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectChemistry, Multidisciplinary
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.titleMagnetically Controllable and Degradable Milliscale Swimmers as Intraocular Drug Implants
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscovery91bbe15d-017f-446b-b102-ce755523d939
relation.isParentOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06475.pdf
Size:
4.51 MB
Format:
Adobe Portable Document Format