Publication: Magnetically Controllable and Degradable Milliscale Swimmers as Intraocular Drug Implants
| dc.contributor.coauthor | Yildiz, Erdost | |
| dc.contributor.coauthor | Bozuyuk, Ugur | |
| dc.contributor.coauthor | Yildiz, Eray | |
| dc.contributor.coauthor | Wang, Fan | |
| dc.contributor.coauthor | Han, Mertcan | |
| dc.contributor.coauthor | Karacakol, Alp Can | |
| dc.contributor.coauthor | Sheehan, Devin | |
| dc.contributor.coauthor | Yu, Yan | |
| dc.contributor.coauthor | Sitti, Metin | |
| dc.contributor.department | KUTTAM (Koç University Research Center for Translational Medicine) | |
| dc.contributor.department | School of Medicine | |
| dc.contributor.department | Department of Mechanical Engineering | |
| dc.contributor.kuauthor | PhD Student, Yıldız, Erdost | |
| dc.contributor.kuauthor | Faculty Member, Sitti, Metin | |
| dc.contributor.schoolcollegeinstitute | School of Medicine | |
| dc.contributor.schoolcollegeinstitute | College of Engineering | |
| dc.contributor.schoolcollegeinstitute | Research Center | |
| dc.date.accessioned | 2025-09-10T04:57:58Z | |
| dc.date.available | 2025-09-09 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Intraocular drug implants are increasingly used for retinal treatments, such as age-related macular degeneration and diabetic macular edema, due to the rapidly aging global population. Although these therapies show promise in arresting disease progression and improving vision, intraocular implant-based therapies can cause unexpected complications that require further surgery due to implant dislocation or uncontrolled drug release. These frequent complications of intraocular drug implants can be overcome using magnetically controllable degradable milliscale swimmers (MDMS) with a double-helix body morphology. A biodegradable hydrogel, polyethylene glycol diacrylate, is employed as the primary 3D printing material of MDMS, and it is magnetized by decorating it with biocompatible polydopamine-encapsulated iron-platinum nanoparticles. MDMS have comparable dimensions to commercial intraocular implants that achieve translational motions in both aqueous and vitreous bodies. They can be imaged in real-time using optical coherence tomography, ultrasound, and photoacoustic imaging. Thanks to their biodegradable hydrogel-based structure, they can be loaded with anti-inflammatory drug molecules and release the medications without disrupting retinal epithelial viability and barrier function, and decrease proinflammatory cytokine release significantly. These magnetically controllable swimmers, which degrade in a couple of months, can be used for less invasive and more precise intraocular drug delivery compared to commercial intraocular drug implants. | |
| dc.description.fulltext | Yes | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | WOS | |
| dc.description.indexedby | PubMed | |
| dc.description.indexedby | PubMed | |
| dc.description.openaccess | Gold OA | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | EU | |
| dc.description.sponsorship | Max Planck Society; European Union [101059593]; MAXMINDS program under the MPG Diversity Excellence funding scheme; European Research Council (ERC) Advanced Grant SoMMoR [834531] | |
| dc.description.version | Published Version | |
| dc.identifier.doi | 10.1002/advs.202507569 | |
| dc.identifier.eissn | 2198-3844 | |
| dc.identifier.embargo | No | |
| dc.identifier.filenameinventoryno | IR06475 | |
| dc.identifier.pubmed | 40525639 | |
| dc.identifier.quartile | N/A | |
| dc.identifier.uri | https://doi.org/10.1002/advs.202507569 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/30302 | |
| dc.identifier.wos | 001509958400001 | |
| dc.keywords | biodegradation | |
| dc.keywords | hydrogel | |
| dc.keywords | intraocular drug implants | |
| dc.keywords | microrobotics | |
| dc.keywords | retinal diseases | |
| dc.language.iso | eng | |
| dc.publisher | Wiley | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Advanced science | |
| dc.relation.openaccess | Yes | |
| dc.rights | CC BY (Attribution) | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Chemistry, Multidisciplinary | |
| dc.subject | Nanoscience & Nanotechnology | |
| dc.subject | Materials Science, Multidisciplinary | |
| dc.title | Magnetically Controllable and Degradable Milliscale Swimmers as Intraocular Drug Implants | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 91bbe15d-017f-446b-b102-ce755523d939 | |
| relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
| relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 91bbe15d-017f-446b-b102-ce755523d939 | |
| relation.isParentOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
| relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
| relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | d02929e1-2a70-44f0-ae17-7819f587bedd |
Files
Original bundle
1 - 1 of 1
