Publication: Bridging Gaps in the Synthesis of g-CN/WO3-x for Photocatalytic H2O2 Generation: Insights into S-Scheme Heterojunction and Plasmon-Induced Hot Electrons
Program
KU-Authors
KU Authors
Co-Authors
Basak, Aleyna
Ozer, Melek Sermin
Eroglu, Zafer
Sun, Kang
Metin, Onder
Publication Date
Language
Type
Embargo Status
No
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
This study presents a systematic design for fabricating g-CN/WO3-x S-scheme heterojunctions with plasmonic features (localized surface plasmon resonance (LSPR) and hot electrons) to achieve superb photocatalytic H2O2 production activity. To optimize the synthesis, a rational approach is employed to how synthesis parameters influence the emergence of LSPR and hot electrons in WO3-x and their effect on the heterojunction's performance. As a result of such a comprehensive strategy, the developed synthesis methodology effectively bridges gaps in the literature, addressing underexplored strategies for improving photocatalytic efficiency for the controlled synthesis of the g-CN/WO3-x heterojunction. The plasmonic characteristics attributed to oxygen deficiency in WO3 (WO3-x ) and g-CN/WO3-x and interactions of g-CN and WO3-x at the atomic level are further corroborated through a comprehensive analysis employing X-ray photoelectron spectroscopy (XPS), solid-state nuclear magnetic resonance (ssNMR), and electron paramagnetic resonance (EPR). Thanks to the presence of WO3-x , the light-harvesting ability of g-CN/WO3-x heterojunctions spans from the visible to near-infrared region. Moreover, the generation of hot electrons on the surface of WO3-x mitigates electron-hole recombination in the binary heterojunction. Consequently, the g-CN/WO3-x S-scheme heterojunctions synthesized with the optimal recipe provided a superior photocatalytic H2O2 generation rate of 1349.70 mu molL-1 in 10% (v/v) aqueous methanol solution within 90 min, which is 2.36 and 7.17 times greater than that of pristine g-CN and WO3-x , respectively, superior to other similar photocatalysts tested in photocatalytic H2O2 production. The superb photocatalytic activity of the g-CN/WO3-x heterojunction is attributed to the synergistic effects aroused in the S-scheme heterojunction, promoting efficient charge separation with enhanced redox potentials and plasmon-induced hot electrons that both accelerate reactions through the photothermal effect and serve as additional reducing species. This research broadens the perspective toward constructing nonmetallic plasmonic S-scheme heterojunctions for fields utilizing LSPR phenomena, such as photocatalysis, photonics, and biomedicine.
Source
Publisher
Amer Chemical Soc
Subject
Chemistry, Multidisciplinary, Chemistry, Physical, Materials Science, Multidisciplinary
Citation
Has Part
Source
Langmuir
Book Series Title
Edition
DOI
10.1021/acs.langmuir.5c01154
